Answer:
0.16
Step-by-step explanation:
if the number in the thousandths is 5 or over you round it up.
For this case we have the following equation:
Q = Av
Where the area is given by:
A = pi * r ^ 2
A = pi * (d / 2) ^ 2
A = (pi / 4) * d ^ 2
Substituting we have:
Q = ((pi / 4) * d ^ 2) v
From here, we clear the diameter:
d = root ((4 / pi) * (Q / v))
Substituting values we have:
d = root ((4 / pi) * (50/600))
d = 0.36 feet
Answer:
The diameter of a pipe that allows a maximum flow of 50ft ^ 3 / min of water flowing at a velocity of 600ft / min is:
d = 0.36 feet
Tim spends 1/3 each weekday sleeping and 7/24 in school. We can write 1/3 as 8/24 so we have a common denominator. Now we can see that Tim sleeps for 1/24 time of a weekday more then he spends in school.
I hope that's what you meant.
Answer:
Step-by-step explanation:
The discriminant is used to determine the number and nature of the zeros of a quadratic. If the discriminant is positive and a perfect square, there are 2 rational zeros; if the discriminant is positive and not a perfect square, there are 2 rational complex zeros; if the discriminant is 0, there is 1 rational root; if the discriminant is negative, there are no real roots.
The roots/solutions/zeros of a quadratic are where the graph goes through the x axis. Those are the real zeros, even if they don't fall exactly on a number like 1 or 2 or 3; they can fall on 1.32, 4.35, etc. They are still real. If the graph doesn't go through the x-axis at all, the zeros are imaginary because the discriminant was negative and you can't take the square root of a negative number. As you can see on our graph, the parabola never goes through the x-axis. Therefore, the zeros are imaginary because the discriminant was negative. Choice C. Get familiar with your discriminants and the nature of quadratic solutions. Your life will be much easier!
<h3>Given</h3>
... f(x) = x² -4x +1
<h3>Find</h3>
... a) f(-8)
... b) f(x+9)
... c) f(-x)
<h3>Solution</h3>
In each case, put the function argument where x is, then simplify.
a) f(-8) = (-8)² -4(-8) +1 = 64 +32 + 1 = 97
b) f(x+9) = (x+9)² -4(x+9) +1
... = x² +18x +81 -4x -36 +1
... f(x+9) = x² +14x +46
c) f(-x) = (-x)² -4(-x) +1
... f(-x) = x² +4x +1