Answer:
The height reached by the material on Earth is 91 km.
Explanation:
Given that,
Mass 
Radius = 1821 km
Height 
Suppose we need to find that how high would this material go on earth if it were ejected with the same speed as on Io?
We need to calculate the acceleration due to gravity on Io
Using formula of gravity

Put the value into the formula


Let v be the speed at which the material is ejected.
We need to calculate the height
Using the formula of height

Using ratio of height of earth and height of Io


Put the value into the formula





Hence, The height reached by the material on Earth is 91 km.
Answer: 88 Earth days
Explanation:
According to the Kepler Third Law of Planetary motion <em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
</em>
<em />
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit:
(1)
If we assume the orbit is circular and apply Newton's law of motion and the Universal Law of Gravity we have:
(2)
Where
is the mass of the massive object and
is the universal gravitation constant. If we assume
constant and larger enough to consider
really small, we can write a general form of this law:
(3)
Where
is in units of Earth years,
is in AU (<u>1 Astronomical Unit is the average distane between the Earth and the Sun)</u> and
is the mass of the central object in units of the mass of the Sun.
This means when we are making calculations with planets in our solar system
.
Hnece, in the case of Mercury:
(4)
Isolating
:
(5)
(6)
This means the period of Mercury is 88 days.
The specific heat capacity of brass would be ranked between 0 and infinity
The piano strings<span> for </span>low notes<span> are heavier, </span>have<span> more inertia, and </span>vibrate<span> at a lower frequency a lower pitch than lighter </span>strings<span> of the same </span>string<span> tension. Loudness involves how hard the keys are struck, which affects the amplitudes of the </span>vibrating strings<span>. the touch sensitivity of the </span>piano<span> distinguishes it from earlier.
Do you undertand?????
</span>
Answer:
the answer is c google bohj