Answer:
The volume of a given gas sample is directly proportional to its absolute temperature at constant pressure (Charles's law). The volume of a given amount of gas is inversely proportional to its pressure when temperature is held constant (Boyle's law).
Answer:HNO3 + NaOH → H2O + NaNO3
Explanation:
Answer:
Explanation:
The polarity of the 3 compounds would be in the order of
Ferrocene < Acetylferrocene < Diacetylferrocene
Your TLC data has to also support this observation . This can be checked by measuring the values of Rf ( Retention factor = distance travelled by solute/solvent ) .The Rf values also has to follow this particular order: -
Ferrocene > acetylferrocene > diacetylferrocene
2) Hexane happens to be a non-polar solvent. The polarity of hexane can be increased if some polar solvents for example, ethyl and methylene chloride etc are added
Therefore, in the increasing order of solvents polarity, we have
Hexane < 1:1 mixture of hexane: methylene chloride < 9:1 mixture of methylene chloride:
3) Chromatographic techniques all have a stationary phase in addition to a mobile phase. In the case of column chromatography, the silica gel will be the stationary phase and the solvent that will be poured will be the mobile phase.
4) The TLC and column chromatography both happen to have the same stationary phase which is the silica gel. Also, the same solvent mixture is used in both the techniques. This makes the result of the 2 to be almost the same. The difference seen between them is that, TLC works against the gravity while on the other hand column chromatography works in the direction of the gravity.
5) The key feature in the IR spectra of the acetylferrocene that will be absent in the spectra of ferrocene is the presence of carbonyl stretching frequency at close to 1700 per cm(cm-1). This peak is easily differentiated between both acetyl ferrocene and ferrocene.
It should be noted that bond A has greater energy because C. The atoms in bond A are held more tightly together than the atoms in bond B.
<h3>Bond</h3>
The relationship between the bond energies of nitrogen, iodine, and fluorine gases is that the bond in nitrogen gas is the most difficult to break.
From the information given, the molecule with the greatest bid energy is CH4. The bind energy measures the bond strength that the chemical bond has.
Also, the bond energy of the reactants in reaction 1 is greater than the bond energy of the reactants in reaction 2. Due to this, reaction 1 requires a greater input of energy than reaction 2.
Lastly, the difference in the bond energy of Chlorine and Bromine is that Bromine has more electron levels than chlorine.
Learn more about bonds on:
brainly.com/question/819068