
most carnivore live in forest because
- They are highly dependent on flesh for their food and therefore their food is easily available in forests.
- Small animals live in forests that make it the ideal habitat for carnivores.
- Carnivores help in maintaining the herbivore population at a healthy level, by hunting.
- It all helps in keeping ecosystems in balance.
Answer: the same direction I.e to the left.
Explanation:
The component perpendicular to the contact surface is such that will stop the relative motion and, in case of elastic collision like here, return the system to the same kinetic energy. So ball hitting immovable surface will have the same speed (magnitude of velocity) as before the collision.
There will also be parallel force caused by friction, but it has to be treated separately for two reasons:
The perpendicular force is limited to coefficient of friction times the normal force. If that is not enough to stop the ball, it will skid on the surface.The perpendicular force, and this depends on the specific geometry, does not pass through the centre of mass of the ball. Therefore it imparts a moment on the ball that causes it to start rotating. And once the ball is rotating so that the point of contact is stationary, there is no momentum to cause any friction force anymore and the friction force disappears and stops decelerating the ball.
So what happens is that the vertical component of the velocity will be reversed, while the horizontal component will be somewhat reduced with the corresponding amount of kinetic energy transferred to energy of rotation. The rotation will always eliminate the friction force before the horizontal component of velocity is zeroed, so the ball will always continue in the same direction, just a bit slower.
If you instead threw an elastic box (which could not start rotating freely) it could actually bounce back.
Answer:
b. 600,000 J
Explanation:
Applying the law of conservation of energy,
The thermal energy created = Kinetic energy of the suv.
Q' = 1/2(mv²)............... Equation 1
Where Q' = Thermal energy, m = mass of the suv, v = velocity of the suv.
From the question,
Given: m = 3000 kg, v = 20 m/s
Substitute these values into equation 1
Q' = 1/2(3000×20²)
Q' = 600000 J
Hence the right option is b. 600,000 J
Answer:
2.When they reach the bottom of the fall
Explanation:
The potential energy of the waterfall is maximum at the maximum height and decreases with decrease in height. Based on the law of conservation of mechanical energy, as the potential energy of the water fall is decreasing with decrease in height of the fall, its kinetic energy will be increasing and the kinetic energy will be maximum at zero height (bottom of the fall).
Thus, the correct option is "2" When they reach the bottom of the fall
Answer
given,
mass of glider = 0.23 Kg
spring constant = k = 4.50 N/m
spring stretched to 0.130 m
The springs potential energy =


U = 0.038 J
at x = 0,the only energy will be kinetic .


v² = 0.3304
v = 0.575 m/s
displacement of the glider
using conservation of energy



x = 0.678 m