Answer : Capacitors
Explanation : Capacitors are normally placed on transmission or distribution lines when to reduce inductive reactance.
This is because it enhances electromechanical and voltage stability , limit voltage dips at network nodes and reduces the power loss.
So, we can say that inductive reactance normally replace by the capacitors.
Answer:
ΔV=0.484mV
Explanation:
The potential difference across the end of conductor that obeys Ohms law:
ΔV=IR
Where I is current
R is resistance
The resistance of a cylindrical conductor is related to its resistivity p,Length L and cross section area A
R=(pL)/A
Given data
Length L=3.87 cm =0.0387m
Diameter d=2.11 cm =0.0211 m
Current I=165 A
Resistivity of aluminum p=2.65×10⁻⁸ ohms
So
ΔV=IR

ΔV=0.484mV
Answer:
$ 0.48
Explanation:
We can calculate this quantity easily using successive products and taking into account the units.
![\frac{0.08}{kw*h}*2[kw]*3[hr]\\ \\=0.48](https://tex.z-dn.net/?f=%5Cfrac%7B0.08%7D%7Bkw%2Ah%7D%2A2%5Bkw%5D%2A3%5Bhr%5D%5C%5C%20%5C%5C%3D0.48)
The amount is $ 0.48
A watering can is used to hold a water that we will use to water the plants. The water has both mass and volume. Two watering cans are most often different by the volume they contain.
Many various units for volume are used but most often used unit is liter. In a metric system basic units are those such as meter, kilogram and liter while in imperial system units used are those such as foote, inch, pound and gallon.
Unit for volume in metric system is cubic meter. It is equal to a volume of a cube whose all sides measure 1m. This is equal to 1000L. For watering cans that contain several liters units used is decimeter cubed. 1dm^3 = 1L
Answer:
C
Explanation:
Im not sure but I did somthing simalier