The thin atmosphere of Mars is thought to be due to the planet's lack of a magnetic field, which has allowed the Solar wind to blow away much of the gas the planet once had. Venus, despite still having a thick atmosphere of CO2, surprisingly has a similar problem
The width is 2.5 cm long and could not be the right answer
Explanation:
We have,
Mass of a baseball is 0.147 kg
Initial velocity of the baseball is 44.5 m/s
The ball is moved in the opposite direction with a velocity of 55.5 m/s
It is required to find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Change in momentum,

Impulse = 14.7 kg-m/s
Therefore, the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat is 14.7 kg-m/s
Answer:
The correct option is A = 1960 N/m²
Explanation:
Given that,
Mass m= 20,000kg
Area A = 100m²
Pressure different between top and bottom
Assume the plane has reached a cruising altitude and is not changing elevation. Then sum the forces in the vertical direction is given as
∑Fy = Wp + FL = 0
where
Wp = is the weight of the plane, and
FL is the lift pushing up on the plane.
Let solve for FL since the mass of the plane is given:
Wp + FL = 0
FL = -Wp
FL = -mg
FL = -20,000× -9.81
FL = 196,200N
FL should be positive since it is opposing the weight of the plane.
Let Equate FL to the pressure differential multiplied by the area of the wings:
FL = (Pb −Pt)⋅A
where Pb and Pt are the static pressures on bottom and top of the wings, respectively
FL = ∆P • A
∆P = FL/A
∆P = 196,200 / 100
∆P = 1962 N/m²
∆P ≈ 1960 N/m²
The pressure difference between the top and bottom surface of each wing when the airplane is in flight at a constant altitude is approximately 1960 N/m². Option A is correct
Answer:
Phosphorus
Explanation:
Phosphorus needs 3 electrons to complete its outter most shell of electrons