Answer:
Answer:
D) by using military force.
Explanation:
Typically, people like Mussolini and Stalin gain popularity in trying times by promising a type of well-being to a group or nation of stricken people, in which they gain huge amounts of popularity at once. Typically they are then elected to some seat of power, in which, with popularity and most likely the military on their side, they would overthrow the current government. The next step taken is to suppress any opposition or even those who don't fully support the party. This can be given out in two ways, which is through force (especially opposition), or providing benefits to those who are in the party (to draw those who are not exactly supporting to support for the benefits).
With "popular" support, as well as military control, the overthrow is complete, and the group is established in power.
1. When the object is waiting to be released, it is storing a lot of potential energy. When it is released, the potential energy that was once stored is converted into kinetic energy.
Answer:
B. By adding the number of protons and the number of neutrons
Explanation:
The atomic mass is determined by adding the number of protons and neutrons in an atom. An atom is made up of three fundamental particles: Electrons, Protons and Neutrons.
The protons and neutrons occupy a central region in an atom known as the nucleus. The nucleus is positively charged and mass concentrated.
If we compare the relative masses of the subatomic particles, the masses of protons and neutrons would be 1 and that of an electron would be 1/1840. This shows that the mass of electrons are negligible.
In order to ascertain atomic mass, we therefore add the number of protons and neutrons together. This is how we arrive at 12.011 as the value of the atomic mass of C and for other elements.
The atomic mass is also known as the mass number.
Are you referring to the fact that water is a compound while hydrogen is an element? If I'm wrong just comment and clarify and I can edit it, I don't even know what kind of unit you're in. :)
Answer:
To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.
Explanation:
The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]
For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.
As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.
Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.