250kg
would have momentum that is being caried by the impact of the trow
Answer:
The right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²
Explanation:
Thickness of the wall is L= 20cm = 0.2m
Thermal conductivity of the wall is K = 2.79 W/m·K
Temperature at the left side surface is T₁ = 50°C
Temperature of the air is T = 22°C
Convection heat transfer coefficient is h = 15 W/m2·K
Heat conduction process through wall is equal to the heat convection process so

Expression for the heat conduction process is

Expression for the heat convection process is

Substitute the expressions of conduction and convection in equation above


Substitute the values in above equation

Now heat flux through the wall can be calculated as

Thus, the right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²
Answer:
a

b

Explanation:
From the question we are told that
Their distance apart is 
The wavelength of each source wave 
Let the distance from source A where the construct interference occurred be z
Generally the path difference for constructive interference is

Now given that we are considering just the straight line (i.e points along the line connecting the two sources ) then the order of the maxima m = 0
so

=> 
=> 
Generally the path difference for destructive interference is

=> 
=> 
substituting values

=> 
So


and

=> 
=> 
Answer:
For example, when you jump, your legs apply a force to the ground, and the ground applies and equal and opposite reaction force that propels you into the air. Engineers apply Newton's third law when designing rockets and other projectile devices.
Explanation:
Answer:
Yes, because the wrench is moving at the same speed as the sailboat.
The main difference is that a person on the ground would see the wrench moving diagonally, while a person on the boat would see the wrench falling straight down,
This difference in paths lead to the relativistic change in lengths.