;Net force = mass of the body × acceleration of the body due to the net force
; 5000 = 2500 a...then divide both sides by 2500
; acceleration(a) = 2 m/s^2
so you can see all the different categories at once. both as a whole and on an individual scale.
The potential difference across the parallel plate capacitor is 2.26 millivolts
<h3>Capacitance of a parallel plate capacitor</h3>
The capacitance of the parallel plate capacitor is given by C = ε₀A/d where
- ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m,
- A = area of plates and
- d = distance between plates = 4.0 mm = 4.0 × 10⁻³ m.
<h3>Charge on plates</h3>
Also, the surface charge on the capacitor Q = σA where
- σ = charge density = 5.0 pC/m² = 5.0 × 10⁻¹² C/m² and
- a = area of plates.
<h3>
The potential difference across the parallel plate capacitor</h3>
The potential difference across the parallel plate capacitor is V = Q/C
= σA ÷ ε₀A/d
= σd/ε₀
Substituting the values of the variables into the equation, we have
V = σd/ε₀
V = 5.0 × 10⁻¹² C/m² × 4.0 × 10⁻³ m/8.854 × 10⁻¹² F/m
V = 20.0 C/m × 10⁻³/8.854 F/m
V = 2.26 × 10⁻³ Volts
V = 2.26 millivolts
So, the potential difference across the parallel plate capacitor is 2.26 millivolts
Learn more about potential difference across parallel plate capacitor here:
brainly.com/question/12993474
Answer:
Standard deviation = 3
Explanation:
Given


Required
Determine the standard deviation
First, we need to determine the variance;

This gives:



Know that:

Where SD represents standard deviation
This gives

Take square root


Answer:
When work is positive, the environment does work on an object.
Explanation:
According to the work-energy theorem, the net work done by the forces on a body or an object is equal to the change produced in the kinetic energy of the body or an object.
The concept that summarizes a concept related to the work-energy theorem is that ''When work is positive, the environment does work on an object.''