"Temperature is the measure of the average kinetic energy of the particles in a substance, which is related to how hot or cold that substance is. Historically, two equivalent concepts of temperature have developed, the thermodynamic description and a microscopic explanation based on statistical physics"
Answer:


Explanation:
Force of friction on M mass so that it will move down the inclined plane is given as

now if it is moving down the inclined plane at constant speed
so we will have

on other side the mass "m" will go up at constant speed
so we have

so we have

so we have

for special case when m = M
then we have

Answer:
The value of charge q₃ is 40.46 μC.
Explanation:
Given that.
Magnitude of net force 
Suppose a point charge q₁ = -3 μC is located at the origin of a co-ordinate system. Another point charge q₂ = 7.7 μC is located along the x-axis at a distance x₂ = 8.2 cm from q₁. Charge q₂ is displaced a distance y₂ = 3.1 cm in the positive y-direction.
We need to calculate the distance
Using Pythagorean theorem

Put the value into the formula


We need to calculate the magnitude of the charge q₃
Using formula of net force

Put the value into the formula






Hence, The value of charge q₃ is 40.46 μC.
Answer:

Explanation:
The work function of the metal corresponds to the minimum energy needed to extract a photoelectron from the metal. In this case, it is:

So, the energy of the incoming photon hitting on the metal must be at least equal to this value.
The energy of a photon is given by

where
h is the Planck's constant
c is the speed of light
is the wavelength of the photon
Using
and solving for
, we find the maximum wavelength of the radiation that will eject electrons from the metal:

And since
1 angstrom = 
The wavelength in angstroms is

1 watt = 1 joule per sec
11,000 Watts = 11,000 joules per sec
The frequency doesn't matter.