Answer:
Explanation:
(a) The force of gravity is called an attractive force because it is the force (although weak) in which a planetary body or matter uses to attract an object towards itself.
(b) Yes, it does and the formula for force of gravity between any two object is
F = G
where m1 and m2 are masses of the first and second object respectively
r is the distance between the center of the two masses
G is the gravitational constant
Answer:
0.423m
Explanation:
Conversion to metric unit
d = 4.8 cm = 0.048m
Let water density be 
Let gravitational acceleration g = 9.8 m/s2
Let x (m) be the length that the spring is stretched in equilibrium, x is also the length of the cylinder that is submerged in water since originally at a non-stretching position, the cylinder barely touches the water surface.
Now that the system is in equilibrium, the spring force and buoyancy force must equal to the gravity force of the cylinder. We have the following force equation:

Where
N is the spring force,
is the buoyancy force, which equals to the weight
of the water displaced by the submerged portion of the cylinder, which is the product of water density
, submerged volume
and gravitational constant g. W = mg is the weight of the metal cylinder.

The submerged volume would be the product of cross-section area and the submerged length x

Plug that into our force equation and we have



Answer:
If you put in too much helium, and the pressure inside the balloon exceeds the atmospheric pressure on the outside of the balloon, the balloon will burst.
Explanation:
Welcome! I'm just starting out
Answer:
15.75 m/s
Explanation:
v = Velocity of the combined mass of astronaut and tools = 1.8 m/s
= Mass of astronaut = 124 kg
= Mass of tools = 16 kg
= Velocity of astronaut = 0
= Velocity of tools
As linear momentum is conserved

The velocity of the tools is 15.75 m/s
Answer:
conduction
Explanation:
conduction is the movement of heat from one point to another on a metal.
Hope it helps.