1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
3 years ago
5

The 1.18-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in

the horizontal position θ = 0 where the spring is unstretched. If the bar is observed to momentarily stop in the position θ = 46°, determine the spring constant k. For your computed value of k, what is magnitude of the angular velocity of the bar when θ = 30°.
Physics
1 answer:
sattari [20]3 years ago
7 0

Answer:

 k = 11,564 N / m,   w = 6.06 rad / s

Explanation:

In this exercise we have a horizontal bar and a vertical spring not stretched, the bar is released, which due to the force of gravity begins to descend, in the position of Tea = 46º it is in equilibrium;

 let's apply the equilibrium condition at this point

                 

Axis y

          W_{y} - Fr = 0

          Fr = k y

let's use trigonometry for the weight, we assume that the angle is measured with respect to the horizontal

             sin 46 = W_{y} / W

             W_{y} = W sin 46

     

 we substitute

           mg sin 46 = k y

           k = mg / y sin 46

If the length of the bar is L

          sin 46 = y / L

           y = L sin46

 

we substitute

           k = mg / L sin 46 sin 46

           k = mg / L

for an explicit calculation the length of the bar must be known, for example L = 1 m

           k = 1.18 9.8 / 1

           k = 11,564 N / m

With this value we look for the angular velocity for the point tea = 30º

let's use the conservation of mechanical energy

starting point, higher

          Em₀ = U = mgy

end point. Point at 30º

         Em_{f} = K -Ke = ½ I w² - ½ k y²

          em₀ = Em_{f}

          mgy = ½ I w² - ½ k y²

          w = √ (mgy + ½ ky²) 2 / I

the height by 30º

           sin 30 = y / L

           y = L sin 30

           y = 0.5 m

the moment of inertia of a bar that rotates at one end is

          I = ⅓ mL 2

          I = ½ 1.18 12

          I = 0.3933 kg m²

let's calculate

          w = Ra (1.18 9.8 0.5 + ½ 11,564 0.5 2) 2 / 0.3933)

          w = 6.06 rad / s

You might be interested in
Waves travel at different speeds when they travel in different_________.
Gnesinka [82]
I am sure it is frequency
8 0
3 years ago
Water at room temperature is discharged from a pipe at a rate of 1000 gallons per minute (gpm). Express this flow rate in cubic
marshall27 [118]

Answer

given,

discharge rate from pipe = 1000 gallons/minutes

now,

flow rate in  cubic meters per second

1 gallon = 0.00378541 m³

1 min = 60 s

Q = 1000\times \dfrac{0.00378541\ m^3}{1\ gallon}\times \dfrac{1\ min}{60\ s}

Q = 0.063 m³/s

flow rate in  liters per minute

1 gallon = 3.78541 L

 Q = 1000\times \dfrac{3.78541\ m^3}{1\ gallon}

 Q = 3785.41 m³/min

flow rate in cubic feet per second

 1 gallon = 0.133681 ft³

 1 min = 60 s

Q = 1000\times \dfrac{0.133681\ ft^3}{1\ gallon}\times \dfrac{1\ min}{60\ s}

Q = 2.23 ft³/s

4 0
3 years ago
Your starship, the Aimless Wanderer,lands on the mysterious planet Mongo. As chief scientist-engineer,you make the following mea
melisa1 [442]

Answer:

m = 1.26*10²⁵ kg.

Explanation:

Assuming that the mass of the stone is much smaller than the mass of the planet, we can get the mass, applying the Universal Law of  Gravitation to both masses, as follows:

Fg = G* ms* mp / rp²

Now, if we apply Newton's 2nd Law to the mass of the stone, we can get the gravitational acceleration, as follows:

Fg = ms*a = ms*g ⇒ g = G*mp / rp²

First of all, we need to get the value of g.

Assuming that this acceleration is constant, we can appy the kinematic equations to this situation.

We know that the stone is thrown upward with an initial velocity vo = 15 m/s.

At the highest point in the trajectory, just before of changing direction, the stone comes momentarily to a stop.

At this point, applying the definition of acceleration, we can write:

vf = vo -g*t ⇒ 0 = vo -gt ⇒ g = vo/t (1)

We have the total time since the stone was thrown upwards, not the one used for the upward trajectory.

It can be showed, using the expression for the displacement (which is the same in both directions) that the time used for going up, it's the same used to go down, so the time that we need to put in (1). is just the half of the total time.

So, replacing in (1) we get the value of g, as follows:

g = 15 m/s / 4.5 s = 3.33 m/s²

Now, we can replace this value in the equation that gives us g based in the Universal Law of Gravitation, as follows:

g=G*mp / rp² (2)

Before solving for mp, however, we need to get the value of the radius of the planet.

Assuming that it's a perfect sphere, we can get this value from the value of the circumference at the planet's equator:

rp = 2*π*rp / 2*π ⇒ rp = 1.0*10⁵ km / 2*π = 15,915 km.

With this value for  rp, we can solve (2) for mp, as follows:

mp= g*rp² / G = 3.33 m/s² * (15,915 km)² / 6,67*10⁻¹¹ N.m²/kg²

mp = 1.26*10²⁵ kg.

8 0
3 years ago
What is the resistance of an object to moving or to stopping
Marianna [84]
Inertia is the resistance of an object to moving or stopping
6 0
3 years ago
Read 2 more answers
Which steps are important when designing and conducting a scientific experiment?
Pepsi [2]
<span>Make an Observation. Scientists are naturally curious about the world. ... Form a Question. After making an interesting observation, a scientific mind itches to find out more about it. ... Form a Hypothesis. ... Conduct an Experiment. ... <span>Analyze the Data and Draw a Conclusion.</span></span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • The psychologist known for latent learning and cognitive maps is _________. A. Robert Rescorla B. Edward Tolman C. William James
    14·2 answers
  • A student pushes a 21-kg box initially at rest, horizontally along a frictionless surface for 10.0 m and then releases the box t
    11·1 answer
  • I need help with the following three physics problems please!
    14·1 answer
  • Moving from 0m/s to 25m/s in 8.0s equals an average acceleration of...
    13·2 answers
  • What is the meaning of the saying "the power of a lens is 1 dioptre "​
    11·1 answer
  • How can cars be made to be more fuel efficient?
    5·1 answer
  • Which avtivties belongs on top of physical activity pyramid
    15·2 answers
  • My school doesn’t really teach help
    14·1 answer
  • What are mechanical waves ?​
    14·1 answer
  • this is my 5th time waisting my points for this question because I could fail my final and I am not getting any answers so can s
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!