Answer:
41.41 m
Explanation:
When force F is applied on an object of mass m for time t and velocity v₁ is created
F X t = mv₁
F = 95 N , t = .53 s, m = 655 kg
95 x .53 = 655 x v₁
v₁ = .0768 m/s
Applying conservation of momentum on man and satellite
m₁ v₁ = m₂v₂
655 x .0768 = 82 xv₂
v₂ = .6134 m/s
their relative velocity
= .6134 + .0768
= .6902 ( they are in opposite direction )
After 60 second distance between them
= 60 x .6902 m
= 41.41 m
To solve this problem it is necessary to apply the concepts given in the kinematic equations of movement description.
From the perspective of angular movement, we find the relationship with the tangential movement of velocity through

Where,
Angular velocity
v = Lineal Velocity
R = Radius
At the same time we know that the acceleration is given as the change of speed in a fraction of the time, that is

Where
Angular acceleration
Angular velocity
t = Time
Our values are




Replacing at the previous equation we have that the angular velocity is



Therefore the angular speed of a point on the outer edge of the tires is 66.67rad/s
At the same time the angular acceleration would be



Therefore the angular acceleration of a point on the outer edge of the tires is 
The wind direction changed from morning to night because land and water absorbing solar energy unequally.
<h3>Convection current</h3>
Convection is said to occur when there is heat transfer by an actual movement of participles from place to place. The movement of air mass (wind) is affected by the relative amounts of solar energy absorbed by the land and sea.
Hence, the wind direction changed from morning to night because land and water absorbing solar energy unequally.
Learn more about convection current: brainly.com/question/12841408
The answer is 2.49 x 10^5 KJ. This was obtained (1) use the formula for specific heat to achieve Q or heat then (2) get the energy to melt the copper lastly (3) Subtract both work and the total energy required to completely melt the copper bar is achieved.
frequency is equal to number of oscillations or vibrations upon time
therefore,
check picture