<span>anwser will be
F = ma
where
F = force exerted on the bullet
m = mass of the bullet = 5 gm (given) = 0.005 kg.
a = acceleration of the bullet
Substituting appropriately,
F = 0.005a --- call this Equation 1
Next working equation is
Vf^2 - Vo^2 = 2as
where
Vf = velocity of the bullet as it leaves the muzzle = 326 m/sec (given)
Vo = initial velocity of bullet = 0
a = acceleration of bullet
s = length of the rifle's barrel
Substituting appropriately,
326^2 - 0 = 2(a)(0.83)
a = 64,022 m/sec^2
the anwser will be
Substituting this into Equation 1,
F = 0.005(64,022)
F =320.11 Newtons
Hope this helps. </span><span>
</span>
They go in the boxes in this order:
density
2.meter
3.matter
4.hypothesis
5.control
6.kilogram
Complete Question
The complete question is shown on the first uploaded image
Answer:
The wavelength is
Explanation:
From the question we are told that
The distance of the slit to the screen is 
The order of the fringe is m = 6
The distance between the slit is
The fringe distance is 
Generally the for a dark fringe the fringe distance is mathematically represented as
![Y = \frac{[2m - 1 ] * \lambda * D }{2d}](https://tex.z-dn.net/?f=Y%20%20%3D%20%5Cfrac%7B%5B2m%20%20-%201%20%5D%20%2A%20%20%5Clambda%20%2A%20%20D%20%20%7D%7B2d%7D)
=> ![\lambda = \frac{Y * 2 * d }{[2*m - 1] * D}](https://tex.z-dn.net/?f=%5Clambda%20%20%3D%20%20%5Cfrac%7BY%20%2A%20%202%20%2A%20%20d%20%7D%7B%5B2%2Am%20%20-%20%201%5D%20%2A%20%20D%7D)
substituting values
=> ![\lambda = \frac{0.019 * 2 * 0.9*10^{-3} }{[2*6 - 1] * 5}](https://tex.z-dn.net/?f=%5Clambda%20%20%3D%20%20%5Cfrac%7B0.019%20%2A%20%202%20%2A%20%200.9%2A10%5E%7B-3%7D%20%7D%7B%5B2%2A6%20%20-%20%201%5D%20%2A%20%205%7D)
=> 

Answer:
A.) V = 14 m/s
B.) h = 36.6 m
Explanation:
Given the formula v = √2gh
where g = 9.8m/sec^2 is the acceleration due to gravity.
A.) Determine the impact velocity for an object dropped from a height of 10 m.
Substitute height h in the given formula
V = √2gh
V = √2 × 9.8 × 10
V = √196
V = 14 m/s
b. Determine the height required for an object to have an impact velocity of 26.8 m/sec (~ 60 mph). Round to the nearest tenth of a meter.
Substitute the velocity in the given formula and make height h the subject of formula.
26.8 = √2 × 9.8 × h
Square both sides
718.24 = 19.6h
h = 718.24 / 19.6
h = 36.64 m
h = 36.6 m