Their combined momentum after they meet is 0 .
Answer:
v = 17.71 m / s
Explanation:
We can work this exercise with the kinematics equations. In general the body is released so that its initial velocity is zero, the acceleration of the acceleration of gravity
v² = v₀² - 2 g (y -y₀)
v² = 0 - 2g (y -y₀)
when it hits the stone the height is zero and part of the height of the seagull I
v² = 2g y₀
v = Ra (2g i)
let's calculate
v =√ (2 9.8 16)
v = 17.71 m / s
Answer:
There's one or two reasons, depending on what is meant by "wind-powered car".
The first reason is that it's impossible for any transfer of energy to be 100% efficient. There will always be frictional losses.
Secondly, if the company means that they want to attach a wind turbine to the car so that the car is powered by the same wind that it generates, that violates the conservation of energy.
Answer:12.28m/s
Explanation:
momentum of baseball =mass of baseball x velocity of baseball
Momentum of baseball =0.31x21
Momentum of baseball =6.51kgm/s
For a softball to have same momentum with the baseball we can say :momentum of baseball =mass of softball x velocity of softball
6.51=0.53 x velocity of softball
Velocity of softball =6.51/0.53
Velocity of softball =12.28m/s