Answer:
The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.
Determine Fx."
Explanation:
We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.
torque=cross product of force and position . mathematically this can be express as
Where
and the position vector
using the determinant method to expand the cross product in order to determine the torque we have
by expanding we arrive at
since we have determine the vector value of the toque, we now compare with the torque value given in the question
if we directly compare the j coordinate we have
Answer:
(A) a net torque but no net force on the loop.
Explanation:
The total force on the loop is zero because the forces on the opposite sides of the loop are equal but act in opposite directions and as a result they cancel each other out. The two forces on opposite sides to the axis of rotation each give rise to a torque about the axis of rotation. This torque is directed along the axis of rotation.
Answer:
The required angle is (90-25)° = 65°
Explanation:
The given motion is an example of projectile motion.
Let 'v' be the initial velocity and '∅' be the angle of projection.
Let 't' be the time taken for complete motion.
Let 'g' be the acceleration due to gravity
Taking components of velocity in horizontal(x) and vertical(y) direction.
= v cos(∅)
= v sin(∅)
We know that for a projectile motion,
t =
Since there is no force acting on the golf ball in horizonal direction.
Total distance(d) covered in horizontal direction is -
d = ×t = vcos(∅)× = .
If the golf ball has to travel the same distance 'd' for same initital velocity v = 23m/s , then the above equation should have 2 solutions of initial angle 'α' and 'β' such that -
α +β = 90° as-
d = = = = .
∴ For the initial angles 'α' or 'β' , total horizontal distance 'd' travelled remains the same.
∴ If α = 25° , then
β = 90-25 = 65°
∴ The required angle is 65°.
B.Radiation, Because the heat is Radiating of of the burner. xD
D. Neutrino
Neutrinos are particles that rarely interact with matter.