1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr402 [8]
3 years ago
14

Different forces were applied to five balls, and each force was applied for the same amount of time. The data is in the table.

Physics
2 answers:
emmainna [20.7K]3 years ago
6 0
C. It doubles I hope this helps and good luck
Alja [10]3 years ago
6 0

The impulse provided to the ball is equal to the change in momentum of the ball.

According to Newton's second law, The rate of change of momentum is directly proportional to the force applied. Hence, the equation can be written as:

Δp = F × t

Δp = change in momentum = Impulse

F = Force

t = time for which the force is applied

Now. if the force is doubled and the time remains same.

F(new) = 2F

t = t

Δp (new) = 2F × t

Δp (new) = 2 Δp (old)

Hence, the impulse gets doubled

Option C is correct.

You might be interested in
A 3.53-g lead bullet traveling at 428 m/s strikes a target, converting its kinetic energy into thermal energy. Its initial tempe
Taya2010 [7]

Complete question:

A 3.53-g lead bullet traveling at 428 m/s strikes a target, converting its kinetic energy into thermal energy. Its initial temperature is 40.0°C. The specific heat is 128 J/(kg · °C), latent heat of fusion is 24.5 kJ/kg, and the melting point of lead is 327°C.

(a) Find the available kinetic energy of the bullet. J

(b) Find the heat required to melt the bullet. J

Answer:

Part (a) the available kinetic energy of the bullet is 323.32 J

Part (b) the heat required to melt the bullet is 216.17 J

Explanation:

Given;

mass of the bullet = 3.53 g = 0.00353 kg

velocity of the bullet = 428 m/s

initial temperature of the bullet = 40.0°C

final temperature of the bullet =  327°C

specific heat capacity, c= 128 J/(kg · °C)

latent heat of fusion, Hf  = 24.5 kJ/kg

Part (a) the available kinetic energy of the bullet. J

KE = ¹/₂ × mv²

KE = ¹/₂ × 0.00353 × 428²

     = 323.32 J

Part (b) the heat required to melt the bullet. J

This is the thermal energy required to increase the temperature of the bullet and the heat energy required to melt the bullet.

Quantity of heat required to raise the temperature of the bullet:

Q = mcΔT

   = 0.00353 × 128 × (327-40)

   = 0.00353 × 128 × 287

   = 129.68 J

Quantity of heat required to melt the bullet:

Q = mH_f

Q = 0.00353 × 24500

   = 86.49 J

TOTAL energy required to melt the bullet = 129.68 J + 86.49 J

                                                                      = 216.17 J

3 0
3 years ago
1.How is the law of conservation of energy demonstrated by the movement of the pendulum?
Snezhnost [94]
1. Law of conservation of energy states that energy cannot be created, nor destroyed, for example, windmills take kinetic energy(movement energy) and convert it into electrical energy using gears and a generator as well as the blades.

so this supports it because the pendulum never reaches the same height twice unless you reset it so the energy is always getting less and less and not randomly getting back onto the pendulum.

2.Gravity, friction and air resistance slow it down as well

3. at the top, potential energy is the amount of energy something has relative to the amount it can disperse before stopping, for example, a book on a shelf has more potential energy than that of a book on a table, this is because when the shelf book falls it will create more energy than the table book.

6 0
3 years ago
Two loudspeakers emit sound waves of the same frequency along the x-axis. The amplitude of each wave is a. The sound intensity i
leonid [27]

Answer:

Explanation:

To find the amplitude of the sound, we must first determine the wavelength and the phase difference between the two speakers.

For the wavelength;

Recall that, the separation between two successive max. and min. intensity points are \dfrac{\lambda}{2}

Thus; for both speakers; the wavelength of the sound is:

\dfrac{\lambda}{2} = (10+30) cm

\dfrac{\lambda}{2} = (40) cm

λ = 80 cm

The relation between the path difference(Δx) and the phase difference(Δ∅) is:

\Delta \phi = \dfrac{2 \pi}{\lambda}\Delta x + \Delta \phi_o

where;

Δx = 10 cm

λ = 80 cm

Δ∅ = π rad

∴

\Delta \phi = \dfrac{2 \pi}{\lambda}\Delta x + \Delta \phi_o

\pi \ rad  = \dfrac{2 \pi}{80 \ cm}(10 \ cm) + \Delta \phi_o

\pi \ rad  = \dfrac{2 \pi}{8}+ \Delta \phi_o

\pi \ rad  = \dfrac{ \pi}{4}+ \Delta \phi_o

\Delta \phi_o  =  \pi -\dfrac{ \pi}{4}

\Delta \phi_o  = \dfrac{ 4\pi - \pi}{4}

\Delta \phi_o  = \dfrac{ 3\pi}{4} \ rad

Suppose both speakers are placed side-by-side, then the path difference between the two speakers is: Δx = 0 cm

Thus, we have:

\Delta \phi = \dfrac{2 \pi}{\lambda}\Delta x + \Delta \phi_o

\Delta \phi = \dfrac{2 \pi}{\lambda}(0 \ cm ) + \dfrac{3 \pi}{4} \ rad

\Delta \phi = \dfrac{3 \pi}{4} \ rad

∴

The amplitude of the sound wave if the two speakers are placed side-by-side is:

A = 2a \ cos \bigg (\dfrac{\Delta \phi }{2} \bigg)

A = 2a \ cos \bigg (\dfrac{\dfrac{3 \pi}{4} }{2} \bigg)

A = 2a \ cos \bigg ({\dfrac{3 \pi}{8} } \bigg)

A = 0.765a

7 0
2 years ago
You can use any coordinate system you like in order to solve a projectile motion problem. To demonstrate the truth of this state
posledela

Answer:

a)  y₂ = 49.1 m ,    t = 1.02 s , b)   y = 49.1 m , t= 1.02 s

Explanation:

a) We will solve this problem with the missile launch kinematic equations, to find the maximum height, at this point the vertical speed is zero

            v_{y}² = v_{oy}² - 2 g (y –yo)

The origin of the coordinate system is on the floor and the ball is thrown from a height

           y-yo = v_{oy}² /2 g
            y- 0 = 10.0²/2 9.8
            y - 0 = 5.10 m
            
The height from the ground is the height that rises from the reference system plus the depth of the ground from the reference system
             y₂ = 5.1 + 44
             y₂ = 49.1 m
Let's use the other equation to find the time
              [tex]v_{y} = v_{oy} - g t

              t = v_{oy} / g

              t = 10 / 9.8

              t = 1.02 s

b) the maximum height

            y- 44.0 = v_{y}² / 2 g

            y - 44.0 = 5.1

            y = 5.1 +44.0

            y = 49.1 m

The time is the same because it does not depend on the initial height

              t = 1.02 s

7 0
3 years ago
What two measurements are needed to determine density?
g100num [7]
Density is defined as (mass) per unit (volume).  So in order to calculate
the density of a glob of some substance, you pretty much have to measure
its mass and its volume. 
7 0
3 years ago
Read 2 more answers
Other questions:
  • 4. Inflection best relates to A. vocabulary. B. volume. C. tone. D. pace.
    12·1 answer
  • A stone that is dropped freely from rest traveled half its total height in the last second. With what velocity will it strike th
    9·2 answers
  • When are tides lowest? What causes these tides to be lowest?
    11·1 answer
  • What is an example of an ionic bond
    5·1 answer
  • A particle with mass 1.09 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.985
    10·1 answer
  • Write down the conservation of momentum?​
    12·1 answer
  • A 2000-kg elevator is at rest when its cable breaks. The elevator falls 26 m before it encounters a giant spring at the bottom o
    7·1 answer
  • HELP!! WILL MARK BRAINLIEST!!!!!
    9·1 answer
  • Please help! the first person to answer this correctly will get a brainlist
    13·2 answers
  • An object with greater mass (a). has greater acceleration when it falls. (b). has a weaker force of gravity. (c). is less affect
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!