Highest fluid potential energy: answer A
Because the fluid is pushed upwards and potential energy is function of height. Since point A is the highest, there is the highest potential energy.
highest fluid pressure: answer C
This is because it is at the bottom where you have a hydrostatic pressure component
increasing fluid speed: answer B
This is because the section of the pipe is smaller and in order to have the same fluid flow rate the speed must increase
<span>A rock is dropped from a sea cliff and hits the water 3.2s later. How high is the cliff?
t = sqrt(2y/g)
3.2 = sqrt(2y/9.81)
y = 50.23 m
</span><span>How long would it take sound to travel the same distance?
t = 50.23 / </span><span>343 m/s
t = 0.15 s
</span><span>How long would it take light to travel this distance?
t = 50.23 / </span><span>299 792 458 m / s
t = 1.68x10^-7 s</span>
The main component in a reflecting telescope is a mirror where the light will bounce off and is then focused into a smaller area. In contrast, a refracting telescope uses lenses that focus the light as it travels towards the other end.
Two different types of reflecting telescopes are:
1.Cassegrain reflector
2.Newtonian telescope
Explanation:
- The distinction between the two is in how they manipulate the incoming light in order to magnify the image. The main component in a reflecting telescope is a mirror where the light will bounce off and is then focused into a smaller area.
- Key advantage of reflecting telescopes is how big you can make them. With lenses, the maximum size is limited to about one meter, largely because of the problems stated above as well as the skyrocketing costs.
- The Newtonian telescope, also called the Newtonian reflector, is a type of reflecting telescope invented Sir Isaac Newton, using a concave primary mirror and a flat diagonal secondary mirror. The Newtonian telescope's simple design has made it very popular with amateur telescope makers.
- The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the optical system's primary mirror entrance aperture.
Answer:
Explanation:
Let s be displacement from equilibrium position . Restoring force
m d²s / dt² = - k s
d²s / dt² = - k /m s
Put k /m = ω
d²s / dt² + ω² s = 0
The solution of this differential equation
= s = A cosωt
Now when t = 0 , s = 2 cm
A = 2 cm
Putting the values we have
2 = A cos 0
A = 2 cm
s ( t) = 2 cos ωt
Answer:
Really fast, usually would bounce up and down after it falls
Explanation: