d = distance between the two point charges = 60 cm = 0.60 m
r = distance of the location of point "a" where the electric field is zero from charge
between the two charges.
= magnitude of charge on one charge
= magnitude of charge on other charge
= 3 
= Electric field by charge
at point "a"
= Electric field by charge
at point "a"
Electric field by charge
at point "a" is given as
= k
/r²
Electric field by charge
at point "a" is given as
= k
/(d-r)²
For the electric field to be zero at point "a"
=
k
/(d-r)² = k
/r²
/(d-r)² = 3
/r²
1/(0.60 - r)² = 3 /r²
r = 0.38 m
r = 38 cm
Answer:
4 m/s
Explanation:
From the question given above, the following data were obtained:
Maximum range (Rₘₐₓ) = 1.6 m
Acceleration due to gravity (g) = 10 m/s²
Initial velocity (u) =?
The initial velocity of the projectile can be obtained as follow:
Rₘₐₓ = u² / g
1.6 = u² / 10
Cross multiply
u² = 1.6 × 10
u² = 16
Take the square root of both side
u = √16
u = 4 m/s
Therefore, the velocity of the projectile is 4 m/s
Move with constant speed or accelerate and will determine direction
Answer:
The particles have just enough energy to move past each other.
Answer:
(97°F − 32) × 5/9 = 36.111°C
Explanation:Hope this helped