Answer:
<u> </u><u>»</u><u> </u><u>Image</u><u> </u><u>distance</u><u> </u><u>:</u>

- v is image distance
- u is object distance, u is 10 cm
- f is focal length, f is 5 cm

<u> </u><u>»</u><u> </u><u>Magnification</u><u> </u><u>:</u>
• Let's derive this formula from the lens formula:

» Multiply throughout by fv

• But we know that, v/u is M

- v is image distance, v is 10 cm
- f is focal length, f is 5 cm
- M is magnification.

<u> </u><u>»</u><u> </u><u>Nature</u><u> </u><u>of</u><u> </u><u>Image</u><u> </u><u>:</u>
- Image is magnified
- Image is erect or upright
- Image is inverted
- Image distance is identical to object distance.
We know, Potential Energy = m * g * h
Here, mass & gravity would be same, but their height will change so it will be:
ΔU = U₂ - U₁
ΔU = mgh₂ - mgh₁
ΔU = mg (h₂ - h₁)
Hope this helps!
Answer:
(a) A = 1 mm
(b) 
(c) ![a_{max}=606.4 m/s^{2}/tex]Explanation:Distance moved back and forth = 2 mm Frequency, f = 124 HzSo, amplitude is the half of the distance traveled back and forth. (a) So, amplitude, A = 1 mm(b) Angular frequency, ω = 2 π f = 2 x 3.14 x 124 = 778.72 rad/s The formula for the maximum speed is given by [tex]V_{max}=\omega \times A](https://tex.z-dn.net/?f=a_%7Bmax%7D%3D606.4%20m%2Fs%5E%7B2%7D%2Ftex%5D%3C%2Fp%3E%3Cp%3E%3Cstrong%3EExplanation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3EDistance%20moved%20back%20and%20forth%20%3D%202%20mm%20%3C%2Fp%3E%3Cp%3EFrequency%2C%20f%20%3D%20124%20Hz%3C%2Fp%3E%3Cp%3ESo%2C%20amplitude%20is%20the%20half%20of%20the%20distance%20traveled%20back%20and%20forth.%20%3C%2Fp%3E%3Cp%3E%28a%29%20So%2C%3Cstrong%3E%20amplitude%2C%20A%20%3D%201%20mm%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%28b%29%20Angular%20frequency%2C%20%CF%89%20%3D%202%20%CF%80%20f%20%3D%202%20x%203.14%20x%20124%20%3D%20778.72%20rad%2Fs%20%3C%2Fp%3E%3Cp%3EThe%20formula%20for%20the%20maximum%20speed%20is%20given%20by%20%3C%2Fp%3E%3Cp%3E%5Btex%5DV_%7Bmax%7D%3D%5Comega%20%5Ctimes%20A)


(c) The formula for the maximum acceleration is given by


[tex]a_{max}=606.4 m/s^{2}/tex]
<span>Answer:
Assuming that I understand the geometry correctly, the combine package-rocket will move off the cliff with only a horizontal velocity component. The package will then fall under gravity traversing the height of the cliff (h) in a time T given by
h = 0.5*g*T^2
However, the speed of the package-rocket system must be sufficient to cross the river in that time
v2 = L/T
Conservation of momentum says that
m1*v1 = (m1 + m2)*v2
where m1 is the mass of the rocket, v1 is the speed of the rocket, m2 is the mass of the package, and v2 is the speed of the package-rocket system.
Expressing v2 in terms of v1
v2 = m1*v1/(m1 + m2)
and then expressing the time in terms of v1
T = (m1 + m2)*L/(m1*v1)
substituting T in the first expression
h = 0.5*g*(m1 + m2)^2*L^2/(m1*v1)^2
solving for v1, the speed before impact is given by
v1 = sqrt(0.5*g/h)*(m1 + m2)*L/m1</span>
weight less on moon than on earth.
high on lift off - G force
low in orbit.
zero at a point between earth and moon