Answer: B. CO
Explanation:
Diatomic molecules are those that are formed by two atoms of the same chemical element (homonuclear diatomic molecule) or different chemical element (heteronuclear diatomic molecule).
In this sense, oxygen is a homonuclear diatomic molecule because it is formed by two atoms of the same element (
) and Carbon monoxide (
) is heteronuclear diatomic molecule.
Sodium Chloride
is not a diatomic molecule because is a product of ionization, but it can be diatomic in its gas phase with a polar covalent bond.
The mass m of the object = 5.25 kg
<h3>Further explanation</h3>
Given
k = spring constant = 3.5 N/cm
Δx= 30 cm - 15 cm = 15 cm
Required
the mass m
Solution
F=m.g
Hooke's Law
F = k.Δx

Answer:
The statement that best describes insulators is <u><em>"Electrons within their atoms are strongly held by the nuclei"</em></u>
Explanation:
Atoms are constituted by a nucleus with positive charge (protons and neutrons), around which negative charges (electrons) revolve.
Substances that have a huge amount of "free electrons" that can move through the material are called conductors. This is due to the low resistance to the movement of the load or electric current.
Materials that do not conduct electricity are called insulators. In this case the electrons are strongly bound to the nucleus and cannot move freely. In this way a great resistance to the flow of electric current is offered.
Finally, semiconductors are the materials that can have electrical properties of conductors or insulators.
So<u><em> the statement that best describes insulators is "Electrons within their atoms are strongly held by the nuclei"</em></u>
the greater the <u>mass</u> of an object the more force is needed to cause acceleration
The particles can undergo small oscillations around x₂.
The given parameters;
- <em>initial energy of the particles = E₁</em>
- <em>final energy of the particles, E₂ = 0.33E₁</em>
The movement of the particles depends on the kinetic energy of the particles.
When kinetic energy of the particles is 100%, the particles can oscillate from x₁ to x₅.
However, when the total energy of this particles is reduced to one-third (¹/₃) or 33% of the initial energy of the particle, the oscillation of the particles will be reduced.
- The maximum position the particle can oscillate is x₅
- The half position the particles can oscillate is x₃
Since 33% is less than the half of the energy of the particle, the particle will oscillate between x₁ and x₂.
Thus, we can conclude that the particles can undergo small oscillations around x₂.
Learn more here:brainly.com/question/23910777