Answer:
a) The shear stress is 0.012
b) The shear stress is 0.0082
c) The total friction drag is 0.329 lbf
Explanation:
Given by the problem:
Length y plate = 2 ft
Width y plate = 10 ft
p = density = 1.938 slug/ft³
v = kinematic viscosity = 1.217x10⁻⁵ft²/s
Absolute viscosity = 2.359x10⁻⁵lbfs/ft²
a) The Reynold number is equal to:

The boundary layer thickness is equal to:
ft
The shear stress is equal to:

b) If the railing edge is 2 ft, the Reynold number is:

The boundary layer is equal to:

The sear stress is equal to:

c) The drag coefficient is equal to:

The friction drag is equal to:

<u>Answer:</u> The voltage needed is 35.7 V
<u>Explanation:</u>
Assuming that the resistors are arranged in parallel combination.
For the resistors arranged in parallel combination:

We are given:

Using above equation, we get:

Calculating the voltage by using Ohm's law:
.....(1)
where,
V = voltage applied
I = Current = 3.75 A
R = Resistance = 
Putting values in equation 1, we get:

Hence, the voltage needed is 35.7 V
Answer:
The circular loop experiences a constant force which is always directed towards the center of the loop and tends to compress it.
Explanation:
Since the magnetic field, B points in my direction and the current, I is moving in a clockwise direction, the current is always perpendicular to the magnetic field and will thus experience a constant force, F = BILsinФ where Ф is the angle between B and L.
Since the magnetic field is in my direction, it is perpendicular to the plane of the circular loop and thus perpendicular to L where L = length of circular loop. Thus Ф = 90° and F = BILsin90° = BIL
According to Fleming's left-hand rule, the fore finger representing the magnetic field, the middle finger represent in the current and the thumb representing the direction of force on the circular loop.
At each point on the circular loop, the force is always directed towards the center of the loop and thus tends to compress it.
<u>So, the circular loop experiences a constant force which is always directed towards the center of the loop and tends to compress it.</u>
If i thought about this properly the answer is b
Dark matter is called dark because it does not appear to interact with the electromagnetic field, which means it does not absorb, reflect or emit electromagnetic radiation, and is therefore difficult to detect.