Sound at 70 dB is 70 dB louder than the human reference level. That's 10⁷ times as much as the reference sound power.
Sound at 73 dB is 73 dB louder than the human reference level. That's 10⁷.³ or 2 x 10⁷ times as much as the reference sound power.
Sound at 80 dB is 80 dB louder than the human reference level. That's 10⁸ or 10 x 10⁷ times as much as the reference sound power.
Now we can adumup:
Intensity of all 3 sources = (10⁷) + (2 x 10⁷) + (10 x 10⁷)
Intensity = (13 x 10⁷) times the sound power reference intensity.
Intensity in dB = 10 log (13 x 10⁷) = 10 (7 + log(13)
Intensity = 70 + 10 log(13)
Intensity = 70 + 10 (1.114)
Intensity = 70 + 11.14
Intensity = <em>81.14 dB</em>
<em>______________________________________</em>
Looking at the questioner's profile, I seriously wonder whether I'll ever get a comment in return from this creature, and how I'll ever find out if my solution is correct. For that matter, I'm also seriously questioning how and whether my solution will ever be used for anything.
Answer:
Thus, any projectile that has an initial vertical velocity of 21.2 m/s and lands 10.0 m below its starting altitude spends 3.79 s in the air.The initial vertical velocity is the vertical component of the initial velocity: v 0 y = v 0 sin θ 0 = ( 30.0 m / s ) sin 45 ° = 21.2 m / s .
<span>Charge of the glass bead Q = 8.0 x 10^-9 C
Distance d = 2.0 cm = 0.02 m
Coulombs constant K = 8.99 x 10^9 Nm^2/C^2
Electric Field E = k x Q / d^2 = 8.99 x 10^9 x 8.0 x 10^-9 / (0.02)^2
E = 71.92 / 0.0004 = 17.98 x 10^4
The electric field is 1.8 x 10^5 N/C</span>
The correct answer is 223 days.
The relationship between the duration of revolution and the separation between the sun is shown by Kepler's third law. Using the notions of circular motion and the gravitational and centripetal forces, we may obtain this equation.
According to Kepler's third rule, the semi-major axis of an orbit is linked to the orbital period of a planet around the sun as follows:
p² = a³
where an is the semi-major axis/distance to the star and p is the orbital period in years.
It is said that a = 0.72 AU for Venus.
P= √(0.72 AU)^3 = 0.61 years.
365 days in a year = 222.9 ≈ 223 days.
To learn more about Kepler's third rule refer the link:
brainly.com/question/1608361
#SPJ4
The bottleneck event of the plants in an area results in secondary succession.
<h2>What is bottleneck event?</h2>
A bottleneck is an event that drastically reduces the population size of an organism. The bottleneck may be caused by various events, such as an environmental disaster, the hunting or habitat destruction that results in the deaths of organisms.
<h3>Secondary succession</h3>
Secondary succession is a type of ecological succession in which plants and animals recolonize a habitat after a major disturbance such as a devastating flood, wildfire, landslide, lava flow, or human activity e.g., farming or road or building construction.
Learn more about succession here: brainly.com/question/1212975