Period 4 transition element that forms 2+ ion with a half‐filled d sub level is
Manganese (Mn)
What is the half-filled d sub-level?
Transition metals are an interesting and challenging group of elements. They have perplexing patterns of electron distribution that don’t always follow the electron-filling rules. Predicting how they will form ions is also not always obvious.
Transition metals belong to the d block, meaning that the d sublevel of electrons is in the process of being filled with up to ten electrons. Many transition metals cannot lose enough electrons to attain a noble-gas electron configuration. In addition, the majority of transition metals are capable of adopting ions with different charges. Iron, which forms either the Fe2+ or Fe3+ ions, loses electrons as shown below.
Some transition metals that have relatively few d electrons may attain a noble-gas electron configuration. Scandium is an example. Others may attain configurations with a full d sublevel, such as zinc and copper.
to know more about half-filled d sub-level
brainly.com/question/24780241
#SPJ4
Answer:
How to convert volts to electron-volts
How to convert electrical voltage in volts (V) to energy in electron-volts (eV).
You can calculate electron-volts from volts and elementary charge or coulombs, but you can't convert volts to electron-volts since volt and electron-volt units represent different quantities.
Volts to eV calculation with elementary charge
The energy E in electron-volts (eV) is equal to the voltage V in volts (V), times the electric charge Q in elementary charge or proton/electron charge (e):
E(eV) = V(V) × Q(e)
The elementary charge is the electric charge of 1 electron with the e symbol.
So
electronvolt = volt × elementary charge
or
eV = V × e
Example
What is the energy in electron-volts that is consumed in an electrical circuit with voltage supply of 20 volts and charge flow of 40 electron charges?
E = 20V × 40e = 800eV
Volts to eV calculation with coulombs
The energy E in electron-volts (eV) is equal to the voltage V in volts (V), times the electrical charge Q in coulombs (C) divided by 1.602176565×10-19:
E(eV) = V(V) × Q(C) / 1.602176565×10-19
So
electronvolt = volt × coulomb / 1.602176565×10-19
or
eV = V × C / 1.602176565×10-19
Example
What is the energy in electron-volts that is consumed in an electrical circuit with voltage supply of 20 volts and charge flow of 2 coulombs?
E = 20V × 2C / 1.602176565×10-19 = 2.4966×1020eV
Explanation:
Answer:
They are both planets made out of gas!
They both share methane, hydrogen and helium gases!
Answer:
3 moles
Explanation:
To solve this problem we will use the Avogadro numbers.
The number 6.022×10²³ is called Avogadro number and it is the number of atoms, ions or molecules in one mole of substance. According to this,
1.008 g of hydrogen = 1 mole = 6.022×10²³ atoms.
18 g water = 1 mole = 6.022×10²³ molecules
we are given 36 g of C-12. So,
12 g of C-12 = 1 mole
24 g of C-12 = 2 mole
36 g of C-12 = 3 mole
So 3 moles of C-12 equals to the number of particles in 36 g of C-12.