Neither N₂ or O₂ are greenhouses gases because they do not cause the greenhouse effect.
<h3>What are greenhouses gases?</h3>
Greenhouse gases trap heat in the atmosphere causing the temperature of the planet to rise.
Greenhouse gases cause the greenhouse effect.
<h3>What is the greenhouse effect?</h3>
The greenhouse effect is the warming up of the planet due to greenhouse gases.
Greenhouse gases include
- carbondioxide
- methane
- nitrous oxide and
- water vapour
So, neither N₂ or O₂ are greenhouses gases because they do not cause the greenhouse effect.
Learn more about greenhouse gases here:
brainly.com/question/2531992
#SPJ12
That is True XD
Hope that helps :D
Atp is a form of energy and it is generated through a chemical process called substrate level phosphorylation.
<h3 /><h3>What is substrate level phosphorylation?</h3>
Substrate-level phosphorylation is a reaction that makes use of substrate to generate Adenosine triphosphate (ATP) which is a form of energy.
ATP is produced through the transfer of phosphate group from the substrate directly to adenosine diphosphate (ADP).
Therefore, substrate-level phosphorylation generates the atp produced in glycolysis.
Learn more on substrate level phosphorylation here,
brainly.com/question/7331523
Answer is: at lower temperatures the reaction rate would decrease.
The lower is the temperature, the slower the reaction becomes.
The Haber process is procedure for the production of ammonia, in this process atmospheric nitrogen (N₂) is converted to ammonia (NH₃):
N₂ + 3H₂ ⇄ 2NH₃ ΔrH = -92 kJ/mol.
Because this is exothermic reaction (enthalpy is less than zero), at lower temperatures, the equilibrium is in favor of ammonia, but the reaction doesn't proceed at a detectable rate.
Colligative properties calculations are used for this type of problem. Calculations are as follows:
ΔT(boiling point) = 101.02 °C - 100.0 °C= 1.02 °C
<span>ΔT(boiling point) = (Kb)m
</span>m = 1.02 °C / 0.512 °C kg / mol
<span>m = 1.99 mol / kg
</span><span>ΔT(freezing point) = (Kf)m
</span>ΔT(freezing point) = 1.86 °C kg / mol (<span>1.99 mol / kg)
</span>ΔT(freezing point) = 3.70 <span>°C
</span>Tf - T = 3.70 <span>°C
T = -3.70 </span><span>°C</span>