Answer:
The air molecules that are surrounding the metal will speed up, and the molecules in the metal will slow down.
Explanation:
There will be a transfer of thermal energy (heat) from the hot metal plate to the surrounding air. This transfer of energy equates to a transfer of kinetic energy in the molecules. As the plate loses heat, the molecules in the plate will lose kinetic energy and slow down. As the surrounding air gains heat, the molecules will gain kinetic energy and speed up.
Answer:
175 kJ
Explanation:
Activation energy can be defined as the potential energy that is needed to change reactants to products. This is the minimum energy required for the chemical reaction to take place. Thus, using the given figure:
Activation energy = activation complex - reactant energy
In the given figure, activation complex = 400 kJ
reactant energy = 225 kJ
Therefore:
Activation energy = 400 - 225 = 175 kJ
Answer: 16 atm
Explanation:
P1V1 = P2V2
P2 = P1V1/V2
=4 atm x 8.00 L/2.00L = 16 atm
Answer:
20N
Explanation:
Given parameters:
Force(N) Acceleration(m/s²)
10 0.2
? 0.4
Unknown:
The force applied when the acceleration is 0.4m/s²
Solution:
From newton's second law of motion;
Force = mass x acceleration
Since we are using the same box, let us find the mass of the box;
Force = mass x acceleration
10 = mass x 0.2
mass =
= 50kg
Now,
The force in the second instance will be;
Force = 50 x 0.4 = 20N
Hi, here is a basic summary of what we did in a lab; there were 3 reactions: The procedure: Reaction 1: Solid sodium hydroxide dissolves in water to form an aqueous solution of ions. NaOH(s)-> Na+(aq) + OH-(aq) ΔH1=-34.121kJ Reaction 2: Solid sodium hydroxide reacts with an aqueous solution of HCl to form water and an aqueous solution of sodium chloride. NaOH(s) + H+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH2=-83.602kJ Reaction 3: An aqueous solution of sodium hydroxide reacts with an aqueous solution of HCl to form water an an aqueous solution of sodium chloride. H+(aq) + OH-(aq) + Na+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH3= -50.2kJ The ΔH values were calculated by dividing the heat gained by the number of moles (each reaction had 0.05moles of NaOH) The problem: Net ionic equations for reaction 2 & 3: 2: NaOH(s) + H+(aq) -> H2O + Na+(aq) 3: H+(aq) + OH-(aq) -> H2O i) In reaction 1, ΔH1 represents the heat evolved as solid NaOH dissolves. Look at the net ionic equations for reactions 2 and 3 and make similar statements as to what ΔH2 and ΔH3 represent. ii) Compare ΔH2 with (ΔH1 + ΔH3). Explain in sentences the similarity between these two values by using your answer to #5 above. Attempt at answering: i) Firstly, ΔH2 represents the heat evolved as the hydrogen ion displaces the sodium ion, creating a single displacement reaction. ΔH3 represents the heat evolved as the hydrogen and hydroxide ion form water via a neutralization reaction. ii) ΔH2 is equal to (or supposed to be, this is a source of error while calculating) (ΔH1 + ΔH3). The similarity between these two values is that .. (this is where I get confused!)
Source https://www.physicsforums.com/threads/calorimetry-help-chemistry.399653/