Answer:
Grey precipitate implies the presence of silver ions
Yellow precipitate implies the presence of lead II ions
Explanation:
Qualitative analysis provides us a quick method of identifying ions present in a sample by chemical reactions involving simple reagents. Precipitates having a unique colour is formed. The identity of ions in the sample is deduced from the colour of precipitate obtained when particular reagents are added.
In the question, a precipitate containing silver ions upon standing turn into grey colour. Similarly, lead II ions give a yellow precipitate.
I think the sun would suck in the moon
Avagadros number states that 1 mol of any substance is made of 6.022 x 10²³ units.
These units could be atoms that make up an element or molecules that make up a compound. CO₂ is a compound therefore its made of CO₂ molecules.
1 mol of CO₂ contains 6.022 x 10²³ molecules of CO₂
Therefore if 6.022 x 10²³ molecules of CO₂ make up 1 mol
then 1.25 x 10¹⁵ molecules of CO₂ make up -

Number of CO₂ moles present - 2.0756 x 10⁻⁹ mol of CO₂
One of the differences I can think of is that hydrogen is no longer listed as a group I element.
According to the mendeleev tables that I looked up, hydrogen is catorgrized as a group I element, along with Lithium, sodium, Potassium etc. However, nowadays, hydrogen does not belong to any groups in the periodic table. This is because there are arguments about whether hydrogen belongs to group I. Group I elements are all alkali metals, while hydrogen is not. However, some people says that hydrogen only have one outer shell electron so it should be in group I. Some people even say hydrogen should belong to group VII because it only needs one more electron in order to achieve the duplet of electrons.
Therefore as you may notice, hydrogen in modern periodic tables are put in the center of the periodic table on the top.
Answer:
A nitrogen atom must gain three electrons to have the same number of electrons as an atom of the following noble gas, neon. Thus, a nitrogen atom will form an anion with three more electrons than protons and a charge of 3−. The symbol for the ion is N3−, and it is called a nitride ion.