<u>Answer:</u> The concentration of hydrogen gas at equilibrium is 0.0275 M
<u>Explanation:</u>
Molarity is calculated by using the equation:

Moles of HI = 0.550 moles
Volume of container = 2.00 L

For the given chemical equation:

<u>Initial:</u> 0.275
<u>At eqllm:</u> 0.275-2x x x
The expression of
for above equation follows:
![K_c=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of hydrogen gas = x = 0.0275 M
Hence, the concentration of hydrogen gas at equilibrium is 0.0275 M
Answer:
B
Explanation:
An exothermic reaction is one in which heat is liberated to the surrounding by a reaction.In this case,the enthalpy of the product is less than that of the reactant and such a reaction has a negative enthalpy (ΔH).
Answer:
As the electrostatically charged object is to be placed in the field of charged particles it will be attracted to those who would be of oppositely charged and repelled by the same charged particles. phenomenon of like charges repel and opposite charges attract each other will be carried out and no deflection will be shown by the charge towards the neutral charge.
Answer:
38.9 grams of 
Explanation:
0.187 mol BaCl2 x 
0.187 m x 208 g/m
0.187 x 208 g
38.896 g --> 38.9 g BaCl2