The characteristic of a circuit actually indicate how the circuit functions. When one designs a circuit they have a specific function in mind and must know how to combine components in order to fulfill this functions.
Answer:

Explanation:
Given that,
Radius, r = 2 m
Velocity, v = 1 m/s
We need to find the magnitude of the centripetal acceleration. The formula for the centripetal acceleration is given by :

So, the magnitude of centripetal acceleration is
.
Answer:
The correct answer is 
Explanation:
The formula for the electron drift speed is given as follows,

where n is the number of of electrons per unit m³, q is the charge on an electron and A is the cross-sectional area of the copper wire and I is the current. We see that we already have A , q and I. The only thing left to calculate is the electron density n that is the number of electrons per unit volume.
Using the information provided in the question we can see that the number of moles of copper atoms in a cm³ of volume of the conductor is
. Converting this number to m³ using very elementary unit conversion we get
. If we multiply this number by the Avagardo number which is the number of atoms per mol of any gas , we get the number of atoms per m³ which in this case is equal to the number of electron per m³ because one electron per atom of copper contribute to the current. So we get,

if we convert the area from mm³ to m³ we get
.So now that we have n, we plug in all the values of A ,I ,q and n into the main equation to obtain,

which is our final answer.
The conversion factor you use is 100 cm = 1 m.
You can divide 20 by 100 to get the answer.
20 cm/100 cm =.2 m
Hope this helped!
Answer:
660 J/kg/°C
Explanation:
Heat lost by metal = heat gained by water
-m₁C₁ΔT₁ = m₂C₂ΔT₂
-(0.45 kg) C₁ (21°C − 80°C) = (0.70 kg) (4200 J/kg/°C) (21°C − 15°C)
C₁ = 660 J/kg/°C