Well we know the correct answer cannot be "a" bcause velocity is tangent to the circlular path of an object experienting centripical motion. Velocity DOES NOT point inward in centripical motion.
we know the correct answer cannot be "b" because "t" stands for "time" which cannot point in any direction. so, time cannot point toward the center of a circle and therefore this answer must be incorrect.
I would choose answer choice "c" because both force and centripical acceleration point toward the center of the circle.
I do not think answer choice "d" can be correct because the velocity of the mass moves tangent to the circle. velocity = (change in position) / time. Therefore, by definition the mass is moving in the direction of the velocity which does not point to the center of the circle.
does this make sense? any questions?
Work= force x displacement :)
Answer:
Option A
Explanation:
Mechanical waves requires some medium to travel through. They travel faster in the dense medium as compared to a free medium.
The speed of a mechanical wave is fastest in the solid medium and the slowest in the gaseous medium. Hence, as the wave traverses from gaseous medium to the solid medium, its speed increases.
Thus, option A is correct
At the time that I'll call ' Q ', the height of the stone that was
dropped from the tower is
H = 50 - (1/2 G Q²) ,
and the height of the stone that was tossed straight up
from the ground is
H = 20Q - (1/2 G Q²) .
The stones meet when them's heights are equal,
so that's the time when
<span>50 - (1/2 G Q²) = 20Q - (1/2 G Q²) .
This is looking like it's going to be easy.
Add </span><span>(1/2 G Q²) to each side.
Then it says
50 = 20Q
Divide each side by 20: 2.5 = Q .
And there we are. The stones pass each other
2.5 seconds
after they are simultaneously launched.
</span>