The correct answer to the question is: A) miles/hour and B) metre/ second.
EXPLANATION:
Before answering this question, first we have to understand speed.
The speed of a body is defined as the rate of distance travelled or the distance travelled by a body per unit time.
Hence, it is a derived quantity which is obtained from distance and time.
The unit of distance can be metre, miles, and the unit of time can be second, minutes or hour.
As speed is the distance covered per unit time, the perfect units will be miles/hour and metre/second.
Hence, the correct options are first and second.
A billiard ball. unless hit, the balls stay at rest. however when hit into another, the balls do not stop unless acted upon by another force.
Answer:
Of longitudinal waves
Explanation:
Depending on the direction of the oscillation, there are two types of waves:
- Transverse waves: in a transverse wave, the oscillations occur perpendicularly to the direction of propagation of the wave. Examples are electromagnetic waves.
- Longitudinal waves: in a longitudinal wave, the oscillations occur parallel to the direction of propagation of the wave. In such a wave, the oscillations are produced by alternating regions of higher density of particles, called compressions, and regions of lower density of particles, called rarefactions. Examples of longitudinal waves are sound waves.
Answer:
114.92749 keV
Explanation:
r = Radius of trajectory
m = Mass of electron = 
B = Magnetic field = 0.044 T
q = Charge of electron = 
The centripetal force and the magnetic forces are conserved

Velocity of first electron

Velocity of second electron

Total kinetic energy is given by

Converting to eV


The energy of incident electron is 114.92749 keV