It depends on the objects chemical composition.
Answer:
yes i relate mass but not acceleration
Answer:
B. Two waves have displaced in opposite directions
Explanation:
Interference occurs when two waves meet at a point in space. When this occurs, two extreme conditions can occur:
- if the two waves are in phase (=displacement in the same direction), the amplitude of the resultant wave is equal to the sum of the amplitudes of the two waves:
A = A1 + A2
and this condition is called constructive interference
- if the two waves are in anti-phase (=displacement in opposite directions), the amplitude of the resultant wave is equal to the difference of the amplitudes of the two waves:
A = |A1 - A2|
and this condition is called destructive interference. Note that if A1=A2, the amplitude of the resultant wave is zero.
Answer:
1) Newton's first law of motion states an object will remain at rest or in uniform will be in uniform motion in a straight line unless a force acts on it
2) Newton's second law states the acceleration of an object is directly proportional to the applied force acting on an object and inversely proportional to the mass of the object
Explanation:
1) With Newton's first law, we are able arrange things within a space and schedule meetings in time knowing that they will remain in place unless an external force changes their positions
2) An example of Newton's second law of motion is that small objects such as a ball are easily accelerated and can be given appreciable acceleration for flight by single, one time contact (such as kicking the ball) while larger objects such as a rock require sustained force application to change their location.