Answer:
The right option is (d) substance undergoing a change of state
Explanation:
Latent Heat: Latent heat is the heat required to change the state of a substance without change in temperature. Latent heat is also known as hidden heat because the heat is not visible. The unit is Joules (J).
Latent heat is divided into two:
⇒ Latent Heat of fusion
⇒ Latent Heat of vaporization.
Latent Heat of fusion: This is the heat energy required to convert a substance from its solid form to its liquid form without change in temperature. E.g (Ice) When ice is heated, its temperature rise steadily until a certain temperature is reached when the solid begins to melts.
Latent Heat of vaporization: This is the heat required to change a liquid substance to vapor without a change in temperature. The latent heat depend on the mass of the liquid and the nature of the liquid. E.g When water is heated from a known temperature its boiling point (100°C) When more heat is supplied to its boiling temperature, it continue to boil without a change in temperature.
From The above, Latent heat brings about a change of state of a substance at a steady temperature.
The right option is (d) substance undergoing a change of state
Seafloor<span> spreading is when the </span>sea floor<span> spreads apart. This occurs at Divergent</span>Boundaries<span>. At which type of </span>boundary is seafloor destroyed<span>? The </span>seafloor<span> is</span>destroyed<span> at a COnvergent </span>Boundary<span>.</span>
yes they would float cause of the weight of the ball
Answer:
A. 50 Hz
B. 2 m/s
Explanation:
We'll begin by converting 20 ms to s. This can be obtained as follow:
1000 ms = 1 s
Therefore,
20 ms = 20 ms × 1 s / 1000 ms
20 ms = 0.02 s
Next, we shall convert the value of the wavelength (i.e 4cm) to m. This can be obtained as follow:
100 cm = 1 m
Therefore,
4 cm = 4 cm × 1 m / 100 cm
4 cm = 0.04 m
A. Determination of the frequency.
Period (T) = 0.02 s
Frequency (f) =?
f = 1 / T
f = 1 / 0.02
f = 50 Hz
Therefore, the frequency of the wave is 50 Hz
B. Determination of the velocity.
Wavelength (λ) = 0.04 m
Frequency (f) = 50 Hz
Velocity (v) =?
v = λf
V = 0.04 × 50
v = 2 m/s
Therefore, the velocity of the wave is 2 m/s