Answer:
speed of the car at the bottom of the driveway is 3.8 m/s
Explanation:
given data
mass = 2.1× 10³ kg
distance = 5 m
angle = 20 degree
average friction force = 4 × 10³ N
to find out
find the speed of the car at the bottom of the driveway
solution
we find acceleration a by force equation that is
force = mg×sin20 - friction force
ma = mg×sin20 - friction force
put here value
2100a = 2100 ( 9.8)×sin20 - 4000
a = 1.447 m/s²
so from motion of equation
v²-u² = 2as
here u is 0 by initial speed and v is velocity and a is acceleration and s is distance
v²-0 = 2(1.447)(5)
v = 3.8
speed of the car at the bottom of the driveway is 3.8 m/s
Well, the figure seems to report that velocity is measured in m/s²... That label should say m/s. (Unless of course this is the graph of acceleration over time, but then the answer would probably be more complicated than the given choices.)
If the graph indeed shows velocity, and the unit is just a typo, then the displacement from A to D is equal to the area under the curve.
From A to B, the area is of a triangle with height 4 m/s and base 1 s, hence the area is 1/2 • (4 m/s) • (1 s) = 2 m.
From B to C, it's a rectangle with length 3 s and height 4 m/s, hence with area (3 s) • (4 m/s) = 12 m.
From C to D, it's a trapezoid with "height" 2 s and bases 4 m/s and 2 m/s, hence with area 1/2 • (4 m/s + 2 m/s) • (2 s) = 6 m.
The total displacement is then 2 m + 12 m + 6m = 20 m.
Answer:
c The amount of water that goes in each pot
Answer:
The International Space Station move at 7.22 km/s.
Explanation:
Orbital speed of satellite is given by
, where G is gravitational constant, M is mass of Earth and r is the distance to satellite from centre of Earth.
r = R + h = 6350 + 1400 = 7750 km = 7.75 x 10⁶ m
G = 6.673 x 10⁻¹¹ Nm²/kg²
M = 5.98 x 10²⁴ kg
Substituting

The International Space Station move at 7.22 km/s.