Answer: 4.9 x 10^6 joules
Explanation:
Given that:
mass of boulder (m) = 2,500 kg
Height of ledge above canyon floor (h) = 200 m
Gravita-tional potential energy of the boulder (GPE) = ?
Since potential energy is the energy possessed by a body at rest, and it depends on the mass of the object (m), gravitational acceleration (g), and height (h).
GPE = mgh
GPE = 2500kg x 9.8m/s2 x 200m
GPE = 4900000J
Place result in standard form
GPE = 4.9 x 10^6J
Thus, the gravita-tional potential energy of the boulder-Earth system relative to the canyon floor is 4.9 x 10^6 joules
Answer:
6858.5712 m/s
Explanation:
Given that:
Radius, r
R = 3.20 * 10^3.
Normal force = 0.5 * normal weight
Normal force = Fn ; Normal weight = Fg
Fn = 0.5Fg
Recall:
mv² / R = Fn + Fg
Fn = 0.5Fg
mv² / R = 0.5Fg + Fg
mv² /R = 1.5Fg
mv² = 1.5Fg * R
F = mg
mv² = 1.5* mg * R
v² = 1.5gR
v = sqrt(1.5gR)
V = sqrt(1.5 * 9.8 * 3.2 * 10^3)
V = sqrt(47.04^3)
V = 6858.5712 m/s
<span>Fasteners are double or triple threaded with the idea of durability. People look for durability in a fastener and if they receive one with triple threaded or double threaded they will feel more safe and at ease knowing it has extra strength added.</span>
Answer:
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Explanation:
Hi there!
The equations of height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height at time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).
v = velocity of the ball at time t.
Placing the origin at the throwing point, y0 = 0.
Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.
v = v0 + g · t
6.00 m/s = 12.0 m/s -9.81 m/s² · t
(6.00 - 12.0)m/s / -9.81 m/s² = t
t = 0.612 s
Now, let´s calculate the height of the baseball at that time:
y = y0 + v0 · t + 1/2 · g · t² (y0 = 0)
y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²
y = 5.51 m
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Have a nice day!
Answer:
a. 2143 turns/m
b. 111.5 m
Explanation:
a. The minimum number of turns per unit length (N/L) can be found using the following equation:


Hence, the minimum number of turns per unit length is 2143 turns/m.
b. The total length of wire is the following:

Since each turn has length 2πr of wire, the total length is:

Therefore, the total length of wire required is 111.5 m.
I hope it helps you!