"Anti-Lock" brake systems release the brakes momentarily when wheel speed sensors indicate a locked wheel during braking and traction.
<u>Explanation:</u>
The safety anti-skid braking system is known as "anti-lock braking system" having huge application on land vehicles like one, two and multiple wheeler vehicles and aircraft. During braking, it avoids wheels to get locked by building tractive contacts to the road's surface.
This seems to be an automated system work on the principles of techniques - threshold and cadence braking. The wheel velocity sensors are utilized by ABS to find whether one or more than one wheels chose to get lock while braking.
Answer:
Speed of the wreckage = 49.29 km/hr
Explanation:
This question is solved simply by using the conservation of momentum law.
The momentum of the three moving bodies are calculated below:
Momentum of Car 1 : 1100 * 55 = 60500 kg.km/hr
Momentum of Truck : 480 * 37 = 17760 kg.km/hr
Momentum of Car 2 : 1300 * 49 = 63700 kg.km/hr
Total mass of all three vehicles: 1100 + 480 + 1300 = 2880 kg
The final momentum equals the initial momentum if it is conserved. Thus we have the following equation:
Final Momentum = Initial Momentum
Final Velocity * Total mass = Momentum of all three vehicles combined
Final Velocity * 2880 = 60500 + 17760 + 63700
Final Velocity = 49.29 km/hr
Answer:
W of the person in moon ≈ 124.70 N
Explanation:
Weight: Weight of a body can be defined as the product of mass and the gravitational acceleration of the body. The S.I unit of weight is Newton (N). It can be expressed mathematically as
W = mg
Where W = weight of the body, m = mass of the body (kg) and a = acceleration of the body (m/s²)
Weight(W) = Mass (m) × Acceleration due to gravity (g)
∴ W = m × g.
If the person is on the moon,
Mass = 76.5 kg.
g (moon) = 16.6% of g ( earth)
But g(earth) = 9.80 m/s².
∴ g (moon) = 9.80 × (16.6/100)
g (moon) = 1.63 m/s², m = 76.5 Kg
∴ Weight of the person in moon = 76.5 × 1.63 =124.695 N
W of the person in moon ≈ 124.70 N
Answer:
2 m/s
Explanation:
Parameters given:
Mass of first skateboard, m = 3 kg
Initial speed of first skateboard, u = 4 m/s
Mass of second skateboard, M = 1 kg
Initial speed of second skateboard, U = 0 m/s
Final speed of second skateboard, V = 6 m/s
Using the principle of the conservaton of momentum, the total initial momentum is equal to the total final momentum.
Momentum is the product of mass and velocity. This implies that:
m*u + M*U = m*v + M*V
(3*4) + (1*0) = (3*v) + (1*6)
12 + 0 = 3v + 6
=> 3v = 12 - 6
3v = 6
v = 6/3 = 2 m/s
The final speed of the 3 kg skateboard is 2 m/s
Answer:
discrete lines are observed by the spectroscope, the emission of the lamp is of the ATOMIC source
Explanation:
Bulbs can emit light in several ways:
* When the emission is carried out by the heating of its filament, the bulb is called incandescent, in general its spectrum is similar to that of a black body, this is a continuous spectrum with a maximum dependent on the fourth power of the temperature of the filament.
* The emission can be by atomic transitions, in this case there is a discrete spectrum formed by the spectral lines of the material that forms the gas of the lamp, in general for the yellow emission the most used materials are mercury and sodium or a mixture of they.
Consequently, as discrete lines are observed by the spectroscope, the emission of the lamp is of the ATOMIC type