1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yaroslaw [1]
2 years ago
13

An "energy bar" contains 26 ggof carbohydrates.How much energy is this in joules?

Physics
1 answer:
Alekssandra [29.7K]2 years ago
8 0
I’m it’s about 3.4878 energy in joules
You might be interested in
Which factor is most important in determining climate?
alisha [4.7K]
Temperature. The other three dont have anything to do with determining climate

8 0
3 years ago
Read 2 more answers
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
You launch a cannonball at an angle of 35° and an initial velocity of 36 m/s (assume y = y₁=
velikii [3]

Answer:

Approximately 4.2\; {\rm s} (assuming that the projectile was launched at angle of 35^{\circ} above the horizon.)

Explanation:

Initial vertical component of velocity:

\begin{aligned}v_{y} &= v\, \sin(35^{\circ}) \\ &= (36\; {\rm m\cdot s^{-1}})\, (\sin(35^{\circ})) \\ &\approx 20.6\; {\rm m\cdot s^{-1}}\end{aligned}.

The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing y_{1} is the same as the altitude y_{0} at which this projectile was launched: y_{0} = y_{1}.

Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is 20.6\; {\rm m\cdot s^{-1}} (upwards,) the vertical velocity right before landing would be (-20.6\; {\rm m\cdot s^{-1}}) (downwards.) The change in vertical velocity is:

\begin{aligned}\Delta v_{y} &= (-20.6\; {\rm m\cdot s^{-1}}) - (20.6\; {\rm m\cdot s^{-1}}) \\ &= -41.2\; {\rm m\cdot s^{-1}}\end{aligned}.

Since there is no drag on this projectile, the vertical acceleration of this projectile would be g. In other words, a = g = -9.81\; {\rm m\cdot s^{-2}}.

Hence, the time it takes to achieve a (vertical) velocity change of \Delta v_{y} would be:

\begin{aligned} t &= \frac{\Delta v_{y}}{a_{y}} \\ &= \frac{-41.2\; {\rm m\cdot s^{-1}}}{-9.81\; {\rm m\cdot s^{-2}}} \\ &\approx 4.2\; {\rm s} \end{aligned}.

Hence, this projectile would be in the air for approximately 4.2\; {\rm s}.

8 0
1 year ago
Read 2 more answers
A 53.3 kg woman slides down a 35.0° hill with an acceleration of 4.10 m/s. What is the friction force acting on the woman?
lorasvet [3.4K]

Answer:

I attached an image that should help.

Explanation:

Check it out.

5 0
2 years ago
For the following elementary reaction 2br• -> br2-. The rate of consumption of the reaction and the rate of formation of prod
Scorpion4ik [409]

Answer: -\frac{1}{2}\times \frac{d[Br^.]}{dt}=+\frac{d[Br_2]}{dt}

Explanation:

Rate of a reaction is defined as the rate of change of concentration per unit time.

Thus for reaction:

2Br^.\rightarrow Br_2

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.

Rate=-\frac{d[Br^.]}{2dt}

or Rate=+\frac{d[Br_2]}{dt}

Thus -\frac{d[Br^.]}{2dt}=+\frac{d[Br_2]}{dt}

4 0
3 years ago
Other questions:
  • Thermopane window is constructed, using two layers of glass 4.0 mm thick, separated by an air space of 5.0 mm.
    15·1 answer
  • The electric potential in a certain region is given by the equation V(x,y,z) = 3αx2y3 - 2γx2y4z2 where the potential is in volts
    11·1 answer
  • A car of mass 1230 kg is on an icy driveway inclined at an angle of 39°. The acceleration of gravity is 9.8 m/s². θ If the incli
    5·1 answer
  • Oxygen and nutrients are moved through the body by the: a. circulatory system c. lymphatic system b. digestive system d. reprodu
    11·1 answer
  • A 1500 kg car drives around a flat, 50 m diameter track, starting from rest. The drive wheels supply a small but steady 525 N fo
    15·1 answer
  • A cylinder within a piston expands from a volume of 1.00 L to a volume of 2.00 L against an external pressure of 1.00 atm. How m
    10·1 answer
  • Two positive charges are placed near each other what happens between the charges
    7·2 answers
  • Please help me!!!!!!!!!!!!!!!​
    7·1 answer
  • What is 2+2 is 4 - 1 =??<br><br><br><br> Know your memes!
    5·2 answers
  • 1. A composite when tested bounces half as high as the original material. How can
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!