Answer:
Explained
Explanation:
Newton would resort to the classical mechanics and say that the momentum of the particle that is moving with a constant velocity will be given by: momentum = mass x velocity
this approach will highlight the particle nature and will not be relativistic.
De-Broglie will say that the momentum of the particle is related to its associated matter wave and the relation between them is given by:

where \lambda = wavelength of the matter wave associated to the particle, h = planck's constant
and
thus, this highlights the wave nature of the particle and is also relativistic.
Answer:
A 100 N force acting on a lever 2 m from the fulcrum balances an object 0.5 m from the fulcrum on. ... What is the weight of the object(in newtons)? What is its mass (in kg)? ... mass at the one end and effort arm is the distance between pivot and effort applied at the other end.
Explanation:
hpoe this helps you.
<span>hydrocarbon (but im not 100% sure)</span>
Answer:
1) λ = 0.413 m
, 2)v = 25,213 m / s
, 3) T = 0.216 N
, 4) m = 22.04 10-3 kg
Explanation:
1) The resonance occurs when the traveling wave bounces at the ends and the two waves are added, the ends as they are fixed have a node, the wavelength and the length of the string are related
λ = 2L / n n = 1, 2, 3 ...
In this case L = 0.62 m and n = 3
Let's calculate
λ = 2 0.62 / 3
λ = 0.413 m
2) the velocity related to wavelength and frequency
v = λ f
v = 0.413 61
v = 25,213 m / s
3) let's use the equation
v = √T /μ
T = v² μ
T = 25,213² 3.4 10⁻⁴
T = 0.216 N
4) the rope tension is proportional to the hanging weight
T-W = 0
T = W
W = m g
m = W / g
m = 0.216 / 9.8
m = 22.04 10-3 kg
5) n = 2
λ = 2 0.62 / 2
λ = 0.62 m
6) v = λ f
v = 0.62 61
v = 37.82 m / s
7) T = v² μ
T = 37.82² 3.4 10⁻⁴
T = 0.486 N
8) m = W / g
m = 0.486 / 9.8
m = 49.62 10⁻³ kg
9) n = 1
λ = 2 0.62
λ = 1.24 m
v = 1.24 61
v = 75.64 m / s
T = v² miu
T = 75.64² 3.4 10⁻⁴
T = 2.572 10⁻² N
m = 2.572 10⁻² / 9.8
m = 262.4 10⁻³ kg
Answer:
Light includes ALL of these answers: Radio/Microwaves. Visible light and X-rays/Gamma rays.