Mg (s) + HCl (aq) → MgCl₂(s) + H₂(g)
Looking at the equation :
We have 1 Mg at the left hand side and 1 Mg as well on the right hand side.
So that is balanced.
We have 1 H at the left hand side and 2 H on the right hand side.
So that is not balanced. Same for Chlorine. Cl.
We add 2 to the HCl on the left hand side and that balances it.
Mg(s) + 2HCl(aq) → MgCl₂(s) + H₂(g)
moles Cu produced : 0.002
<h3>Further explanation</h3>
Concentration of copper sulfate (CuSO₄) : 0.319 g/dm³
MW CuSO₄ :
mol CuSO₄ /dm³ :
CuSO₄⇒Cu²⁺ + SO₄²⁻
mol Cu : mol CuSO₄ = 1 : 1 , so mol Cu²⁺=0.002
I think it would be C.100.5cm or D.100.5ml hope that helps
Answer: The possible molecular formula will be
Explanation:
Mass of C= 27.3 g
Mass of O = 72.7 g
Step 1 : convert given masses into moles.
Moles of C =
Moles of O =
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C =
For O =
The ratio of C : O = 1: 2
Hence the empirical formula is
The possible molecular formula will be=
Answer:
1.12g/mol
Explanation:
The freezing point depression of a solvent for the addition of a solute follows the equation:
ΔT = Kf*m*i
<em>Where ΔT is change in temperature (Benzonitrile freezing point: -12.82°C; Freezing point solution: 13.4°C)</em>
<em>ΔT = 13.4°C - (-12.82) = 26.22°C</em>
<em>m is molality of the solution</em>
<em>Kf is freezing point depression constant of benzonitrile (5.35°Ckgmol⁻¹)</em>
<em>And i is Van't Hoff factor (1 for all solutes in benzonitrile)</em>
Replacing:
26.22°C = 5.35°Ckgmol⁻¹*m*1
4.90mol/kg = molality of the compound X
As the mass of the solvent is 100g = 0.100kg:
4.9mol/kg * 0.100kg = 0.490moles
There are 0.490 moles of X in 551mg = 0.551g, the molar mass (Ratio of grams and moles) is:
0.551g / 0.490mol
= 1.12g/mol
<em>This result has no sense but is the result by using the freezing point of the solution = 13.4°C. Has more sense a value of -13.4°C.</em>