<span>"They have different numbers of neutrons and different mass numbers. Remember mass number is protons plus neutrons. The number of protons for an element will never change, however the number of neutrons can." I took the test, its D</span>
It’s baron I got it right on edg
Complete Question:
A chemist prepares a solution of silver (I) perchlorate (AgCIO4) by measuring out 134.g of silver (I) perchlorate into a 50.ml volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the silver (I) perchlorate solution. Round your answer to 2 significant digits.
Answer:
13 mol/L
Explanation:
The concentration in mol/L is the molarity of the solution and indicates how much moles have in 1 L of it. So, the molarity (M) is the number of moles (n) divided by the volume (V) in L:
M = n/V
The number of moles is the mass (m) divided by the molar mass (MM). The molar mass of silver(I) perchlorate is 207.319 g/mol, so:
n = 134/207.319
n = 0.646 mol
So, for a volume of 50 mL (0.05 L), the concentration is:
M = 0.646/0.05
M = 12.92 mol/L
Rounded to 2 significant digits, M = 13 mol/L
The molar concentration is 1.11M.
<h3>What is molar concentration?</h3>
The phrase "molar concentration" (also known as "molarity," "amount concentration," or "substance concentration") refers to the amount of a substance per unit volume of solution and is used to describe the concentration of a chemical species, specifically a solute, in a solution. The most frequent measure of molarity in chemistry is the number of moles per liter, denoted by the unit symbol mol/L or mol/dm3 in SI units. A solution with a concentration of 1 mol/L is referred to as 1 molar, or 1 M.
<h3>Given : </h3>
Volume of the solution = 2L
Mass of glucose given = 200g
Concentration of glucose= ?
<h3>Formula use: </h3>
Molarity = no. of moles of solute / volume of the solution (L)
Moles of solute = given mass of solute / molar mass of the solute
<h3>Solution: </h3>
No. of moles of solute( glucose ) = 200 / 180 = 1.11 moles'
Molarity = 1.11 / 2 = 0.5555 mol L ^(-1)
Therefore, the molar concentration of glucose in the solution = 0.555 mol L ^(-1)
To learn more about molar concentration :
brainly.com/question/15532279
#SPJ4
A balanced equation is a prime example of the law of the conservation of mass as the number of atoms in the reactants is consistent with the number of atoms in the reactants meaning the amount of matter has not changed and no mass has been created or destroyed hence obeying the law.