Answer:
0.752 m/s
Explanation:
m1 = 3.00kg
u1 = 5.05m/s
m2 = 2.76kg
u2 = -3.66m/s
According to the law of conservation of momentum,
m1u1 + m2u2 = (m1+m2)v
3(5.05) + 2.76(-3.66) = (5.05+2.76)v
15.15 - 9.2736 = 7.81v
5.8764 = 7.81v
v = 5.8764/7.81
v = 0.752m/s
Answer:
hello your question is not properly arranged attached below is the arranged table and solution
answer : attached table below
Explanation:
Given data:
02 molecules size = 10^-10m
smoke particles size = 0.3 mm
cloud droplets size = 20 mm
Rain droplets size = 3 mm
Attached below is a table showing the kind of scattering that is expected to occur at various wave lengths
Note : For Rayleigh scattering the wave particle is smaller than the wave length while for Non-selective scattering the wave particle is greater than the wavelength.
and For Mie scattering the wavelength is the same as the wavelength.
The bouncy ball experiences the greater momentum change.
To understand why, you need to remember that momentum is actually
a vector quantity ... it has a size AND it has a direction too.
The putty and the ball have the same mass, and you throw them
with the same speed. So, on the way from your hand to the wall,
they both have the same momentum.
Call it " M in the direction toward the wall ".
After they both hit the wall:
-- The putty has zero momentum.
Its momentum changed by an amount of M .
-- The ball has momentum of " M in the direction away from the wall ".
Its momentum changed by an amount of 2M .
It expands and pushes the crack further aprt