Answer:
16.63min
Explanation:
The question is about the period of the comet in its orbit.
To find the period you can use one of the Kepler's law:

T: period
G: Cavendish constant = 6.67*10^-11 Nm^2 kg^2
r: average distance = 1UA = 1.5*10^11m
M: mass of the sun = 1.99*10^30 kg
By replacing you obtain:

the comet takes around 16.63min
It decreases because it gave its momentum to the other car.
Answer:
maximum amplitude = 0.08 m
Explanation:
Given that
Time period T= 0.58 s
acceleration of gravity g= 9.8 m/s²
We know that time period of simple harmonic motion given as
T = 2π/ω
0.58 = 2π/ω
ω = 10.83rad/s
ω=angular frequency
Lets take amplitude = A
The maximum acceleration given as
a= ω² A
The maximum acceleration should be equal to g ,then block does not separate
a= ω² A
9.8 = 10.83² A
A = 0.08m
maximum amplitude = 0.08 m
Explanation:
Below is an attachment containing the solution.
We will apply the concepts related to Newton's second law. At the same time we will convert everything to the system of international units.

The values of the velocities are,


We know that the acceleration is equivalent to the change of the speed in a certain time therefore



Now applying the Newton's second law we have,



Therefore the approximate magnitude is 8516.36N