Answer:
Ek = 1705.28 [J]
Explanation:
In order to solve this problem, we must remember that kinetic energy can be calculated by means of the following equation.

where:
m = mass [kg]
v = velocity [m/s]
Ek = kinetic energy [J] (Units of Joules)
<u>For the person running</u>
<u />
<u />
<u />
<u>For the bullet</u>
<u />
<u />
<u />
<u />
<u />
The difference in Kinetic energy is equal to:
Ek = 2025 - 319.72
Ek = 1705.28 [J]
Explanation:
An Example of push as a force would be to push on a swing. The force moves the swing in a particular direction and the harder that you push the further the swing will go.
An example of pull as a force would be opening a door. ...
An example of pressure as a force is when you push down on a pile of grapes. is this what you mean
Answer:
Explanation:
Is beacuse of the air within our bodys is exerting the same pressure out wards so tjere is no pressure difference
Answer:
The final charges of each sphere are: q_A = 3/8 Q
, q_B = 3/8 Q
, q_C = 3/4 Q
Explanation:
This problem asks for the final charge of each sphere, for this we must use that the charge is distributed evenly over a metal surface.
Let's start Sphere A makes contact with sphere B, whereby each one ends with half of the initial charge, at this point
q_A = Q / 2
q_B = Q / 2
Now sphere A touches sphere C, ending with half the charge
q_A = ½ (Q / 2) = ¼ Q
q_B = ¼ Q
Now the sphere A that has Q / 4 of the initial charge is put in contact with the sphere B that has Q / 2 of the initial charge, the total charge is the sum of the charge
q = Q / 4 + Q / 2 = ¾ Q
This is the charge distributed between the two spheres, sphere A is 3/8 Q and sphere B is 3/8 Q
q_A = 3/8 Q
q_B = 3/8 Q
The final charges of each sphere are:
q_A = 3/8 Q
q_B = 3/8 Q
q_C = 3/4 Q
Answer:
(a)
(b) 
Explanation:
Part (a)
The total length of copper cord L=86.3 m
The cross sectional area A=1.71×10⁻⁶m²
The resistivity of copper p=1.72×10⁻⁸Ω
Thus the resistance of extension cord is

Part (b)
The resistance of trimmer Rt=17.9 ohms
When voltage of 120V is applied then the current I is passing through series circuit is

Thus the voltage across the trimmer is:
