1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena-2011 [213]
3 years ago
15

A 0.50-kg object moves in a horizontal circular track with a radius of 2.5 m. An external forceof 3.0 N, always tangent to the t

rack, causes the object to speed up as it goes around. Thework done by the external force as the mass makes one revolution is:
Physics
1 answer:
kodGreya [7K]3 years ago
4 0

The work done by the force is 47.1 J

Explanation:

The work done by a force in moving an object is given by

W=Fd cos \theta (1)

where

F is the magnitude of the force

d is the distance covered by the object

\theta is the angle between the direction of the force and the motion of the object

In this problem, the force applied to the object is

F = 3.0 N

This force is always tangential to the track: this means that at every instant, the force is parallel to the motion of the object, so

\theta=0

And the distance covered is equal to the circumference of the circle, which is:

d=2\pi r=2\pi (2.5 m)=15.7 m

where r = 2.5 m is the radius.

Now we can substitute into eq.(1) to find the work done:

W=(3.0)(15.7)(cos 0)=47.1 J

Learn more about work:

brainly.com/question/6763771

brainly.com/question/6443626

#LearnwithBrainly

You might be interested in
Determine the energy required to accelerate an electron between each of the following speeds. (a) 0.500c to 0.900c MeV (b) 0.900
Aleonysh [2.5K]

Answer:

The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.

Explanation:

We know that,

Mass of electron m_{e}=9.11\times10^{-31}\ kg

Rest mass energy for electron = 0.511 Mev

(a). The energy required to accelerate an electron from 0.500c to 0.900c Mev

Using formula of rest,

E=\dfrac{E_{0}}{\sqrt{1-\dfrac{v_{f}^2}{c^2}}}-\dfrac{E_{0}}{\sqrt{1-\dfrac{v_{i}^2}{c^2}}}

E=\dfrac{0.511}{\sqrt{1-\dfrac{(0.900c)^2}{c^2}}}-\dfrac{0.511}{\sqrt{1-\dfrac{(0.500c)^2}{c^2}}}

E=0.582\ Mev

(b). The energy required to accelerate an electron from 0.900c to 0.942c Mev

Using formula of rest,

E=\dfrac{E_{0}}{\sqrt{1-\dfrac{v_{f}^2}{c^2}}}-\dfrac{E_{0}}{\sqrt{1-\dfrac{v_{i}^2}{c^2}}}

E=\dfrac{0.511}{\sqrt{1-\dfrac{(0.942c)^2}{c^2}}}-\dfrac{0.511}{\sqrt{1-\dfrac{(0.900c)^2}{c^2}}}

E=0.350\ Mev

Hence, The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.

4 0
4 years ago
A solenoid is designed to produce a magnetic field of 3.50×10^−2 T at its center. It has a radius of 1.80 cm and a length of 46.
Anna11 [10]

Answer:

a. 2143 turns/m

b. 111.5 m

Explanation:

a. The minimum number of turns per unit length (N/L) can be found using the following equation:

B = \frac{\mu_{0}NI}{L}

\frac{N}{L} = \frac{B}{\mu_{0}I} = \frac{3.50 \cdot 10^{-2} T}{4\pi \cdot 10^{-7} Tm/A*13.0 A} = 2143 turns/m

Hence, the minimum number of turns per unit length is 2143 turns/m.

b. The total length of wire is the following:

N = 2143 turns/m*L = 2143 turns/m*46.0 \cdot 10^{-2} m = 986 turns

Since each turn has length 2πr of wire, the total length is:

L_{T} = N*2\pi r = 986 turn*2*\pi*1.80 \cdot 10^{-2} m = 111.5 m

Therefore, the total length of wire required is 111.5 m.

I hope it helps you!

4 0
3 years ago
You have a motion security light by your door cat runs across the in the light turns on what is the input of the system and what
Neporo4naja [7]
A motion security line is a system that is used to detect motion.
The input for the system is MOTION and the output is LIGHT. That is, when the system detects motion it switch on light.
Remember, an Input is the information that was inserted into a system while the output is the result of the processed information.
5 0
3 years ago
A .5 kg air puck moves to the right at 3 m/s, colliding with a 1.5kg air puck that is moving to the left at 1.5 m/s.
arlik [135]

Answer:

part (a) v = 1.7 m/s towards right direction

part (b) Not an elastic collision

part (c) F = -228.6 N towards left.

Explanation:

Given,

  • Mass of the first puck = m_1\ =\ 5\ kg
  • Mass of the second puck = m_2\ =\ 3\ kg
  • initial velocity of the first puck = u_1\ =\ 3\ m/s.
  • Initial velocity of the second puck = u_2\ =\ -1.5\ m/s.

Part (a)

Pucks are stick together after the collision, therefore the final velocities of the pucks are same as v.

From the conservation of linear momentum,

m_1u_1\ +\ m_2u_2\ =\ (m_1\ +\ m_2)v\\\Rightarrow v\ =\ \dfrac{m_1u_1\ +\ m_2u_2}{m_1\ +\ m_2}\\\Rightarrow v\ =\ \dfrac{5\times 3\ -\ 1.5\times 1.5}{5\ +\ 1.5}\\\Rightarrow v\ =\ 1.7\ m/s.

Direction of the velocity is towards right due to positive velocity.

part (b)

Given,

Final velocity of the second puck = v_2\ =\ 2.31\ m/s.

Let v_1 be the final velocity of first puck after the collision.

From the conservation of linear momentum,

m_1u_1\ +\ m_2u_2\ +\ m_1v_1\ +\ m_2v_2\\\Rightarrow v_1\ =\ \dfrac{m_1u_1\ +\ m_2u_2\ -\ m_2v_2}{m_1}\\\Rightarrow v_1\ =\ \dfrac{5\times 3\ -\ 1.5\times 1.5\ -\ 1.5\times 2.31}{5}\\\Rightarrow v_1\ =\ 1.857\ m/s.

For elastic collision, the coefficient of restitution should be 1.

From the equation of the restitution,

v_1\ -\ v_2\ =\ e(u_2\ -\ u_1)\\\Rightarrow e\ =\ \dfrac{v_1\ -\ v_2}{u_2\ -\ u_1}\\\Rightarrow e\ =\ \dfrac{1.857\ -\ 2.31}{-1.5\ -\ 3}\\\Rightarrow e\ =\ 0.1\\

Therefore the collision is not elastic collision.

part (c)

Given,

Time of impact = t = 25\times 10^{-3}\ sec

we know that the impulse on an object due to a force is equal to the change in momentum of the object due to the collision,

\therefore I\ =\ \ m_1v_1\ -\ m_1u_1\\\Rightarrow F\times t\ =\ m_1(v_1\ -\ u_1)\\\Rightarrow F\ =\ \dfrac{m_1(v_1\ -\ u_1)}{t}\\\Rightarrow F\ =\ \dfrac{5\times (1.857\ -\ 3)}{25\times 10^{-3}}\\\Rightarrow F\ =\ -228.6\ N

Negative sign indicates that the force is towards in the left side of the movement of the first puck.

3 0
3 years ago
A fuel cell that is becoming very popular for cars runs on:
jok3333 [9.3K]
It runs on Hydrogen gas.

Actually, using hydrogen as a fuel is not new. We used to use it on air vehicle like air balloon. But back then, we still cannot figure out how to safely use this because Hydrogen exlodes rather easily
7 0
3 years ago
Other questions:
  • Two 20.0 g ice cubes at − 20.0 ∘ C are placed into 285 g of water at 25.0 ∘ C. Assuming no energy is transferred to or from the
    10·1 answer
  • Pleaseeee help!!!!!!!!
    15·1 answer
  • Translucent definition: __________ is allowed to pass through translucent objects.
    7·2 answers
  • The current supplied to an air conditioner unit is 2.54 amps. The air conditioner is wired using a 10-gauge (diameter 2.588 mm)
    8·1 answer
  • Acceleration is the rate of change of velocity. The velocity (positive means down) of a pumpkin thrown off the top of Cheadle ha
    15·1 answer
  • On a windless day, two identical balls P and Q are dropped from the top and the middle of a tower at exactly the same time as sh
    5·1 answer
  • What can you infer from the fact that metals are good conductors of electricity?
    12·2 answers
  • Describe the kinetic molecular theory
    5·1 answer
  • Can someone explain it with steps?
    8·2 answers
  • What is thermal energy.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!