Like dissolves like
so water is polar
CCl4 is nonpolar
LiCl is polar
CH4 is nonpolar
PCl6 is nonpolar
so LiCl would dissolve
Answer:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Explanation:
First of all, let us balance the equation to give;
2Sb(OH)3 (s) + 3Na2S (aq) = Sb2S3 + 3NaOH
Now, we can observe the presence of positive Sodium ions (Na+) and negative hydroxyl ions (OH-) on both left and right sides of the equation.
Now, the two ions will cancel out. These ions are not really involved in the overall reaction and thus do not require being written in the overall equation. Hence, the overall net ionic reaction can now be written as:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Mass of metal piece is 611 g and volume of graduated cylinder is 25.1 mL. When metal piece is placed in the graduated cylinder water level increases to 56.7 mL. The increase in volume is due to volume of metal piece that gets added to the volume of water.
Thus, volume of metal piece can be calculated by subtracting initial volume from the final one.

Thus, volume of metal piece will be 31.6 mL. The mass of metal piece is given 611 g, density of metal can be calculated as follows:

Therefore, density of metal is 19.33 g/mL.
An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal. A covalent bond involves a pair of electrons being shared between atoms.