The volume is 100mL.
The mass is 1.5kg which is equal to 1500g.
Thus, the density is 1500g / 100mL which is 15g/mL.
Answer:
The maximum pressure is 612.2 Pa
Explanation:
The pressure of the ice (P1) = 624 Pa
The temperature of the ice = 273.16 K
The maximum temperature the specimen = - 5 oC
= -5 + 273 = 268K
The maximum Pressure the freeze drying can be will be (P2) = ?
Using Pressure law, which shows the relationship between pressure and temperature.
P1 / T1 = P2 / T2
P2 T1 = P1 T2
P2 = P1 T2 / T1
P2 = 624 × 268 / 273.16
P2 = 612.2 Pa
The maximum pressure at which drying can be carried out is 612.2 Pa
Check the attached document more explanation. jjjjggggg
I assume what you're asking about is, how does the temperature changes when we increase water's mass, according the formula for heat ?
Well the formula is :

(where Q is heat, m is mass, c is specific heat and

is change in temperature. So according this formula, increasing mass will increase the substance's heat, but won't effect it's temperature since they are not related. Unless, if you want to keep the substance's heat constant, in that case when you increase it's mass you will have to decrease the temperature
Answer:
According to Le Chatelier's principle, increasing the reaction temperature of an exothermic reaction causes a shift to the left and decreasing the reaction temperature causes a shift to the right.
Explanation:
C6H12O6(s) + 6O2(g) ⇌6CO2(g) + 6H2O(g)
We are told that the forward reaction is exothermic, meaning heat is removed from the reacting substance to the surroundings.
According to Le Chatelier's principle,
1. for an exothermic reaction, on increasing the temperature, there is a shift in equilibrium to the left and formation of the product is favoured.
2. if the temperature of the system is decreased, the equilibrium shifts to right and the formation of the reactants is favoured.
3. if the reaction temperature is kept constant, the system is at equilibrium and there is no shift to the right nor to the left.
A study assessing the effect of anxiety (low vs. high) and stress (low vs. moderate vs. high) on test.
Everyone experiences anxiety occasionally, but persistent anxiety can reduce your quality of life. Though likely best known for altering behavior, worry can have negative effects on our physical health. Anxiety speeds up our heartbeat and breathing, concentrating blood flow to the parts of our brains that need it. You are getting ready for a challenging situation by having this extremely bodily reaction. Test performance may be impacted by anxiety. According to studies, pupils with low levels of test anxiety perform better on multiple-choice question (MCQ) exams than pupils with high levels of anxiety. Studies have indicated that female students have greater levels of test anxiety than male students.
Learn more about anxiety here:
brainly.com/question/4913240
#SPJ4