The correct answer is 12.2% BaO.
The solution is found by dividing the mass of the BaO, which is 25.8 grams, by the total mass of the solution, which is 212 grams, then multiplying it by 100 to get the percentage:
A good feeling, but i'm not sure what it's called
Answer:
(molecular) 3 CaCl₂(aq) + 2 (NH₄)₃PO₄(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄Cl(aq)
(ionic) 3 Ca²⁺(aq) + 6 Cl⁻(aq) + 6 NH₄⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄⁺(aq) + 6 Cl⁻(aq)
(net ionic) 3 Ca²⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s)
Explanation:
The molecular equation includes al the species in the molecular form.
3 CaCl₂(aq) + 2 (NH₄)₃PO₄(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄Cl(aq)
The ionic equation includes all the ions (species that dissociate in water) and the species that do not dissociate in water.
3 Ca²⁺(aq) + 6 Cl⁻(aq) + 6 NH₄⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄⁺(aq) + 6 Cl⁻(aq)
The net ionic equation includes only the ions that participate in the reaction and the species that do not dissociate in water. In does not include <em>spectator ions</em>.
3 Ca²⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s)
Fe needs to have a positive charge of +3 to balance out -3 Cl
Isotope ¹⁸F⁻ contains:
1) p⁺ = 9; number of protons.
Fluorine has a<span>tomic number Z = 9 (total number of protons).
2) e</span>⁻<span> = 10; </span>number of electrons.<span>
In element number of electrons and protons are the same, because element has neutral charge, but because in this example, fluorine is anion with negative charge, it has one electron more.
3) n</span>° = 9; number of neutrons.
<span>Mass number
A = 18 is total number of protons and neutrons in a nucleus, so number of neutrons is A-Z = 18-9=9.</span>