The given question is incomplete. The complete question is as follows.
Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
(a) at higher temperatures, high-energy collisions happen less frequently.
(b) at low temperatures, low-energy collisions happen more frequently.
(c) at higher temperatures, less-energy collisions happen less frequently.
(d) at higher temperatures, high-energy collisions happen more frequently
Explanation:
When we increase the temperature of a chemical reaction then molecules of the reactant species tend to gain kinetic energy. As a result, they come into motion which leads to more number of collisions within the molecules.
Therefore, chemical reaction will take less amount of time in order to reach its end point. This means that there will occur an increase in rate of reaction.
Thus, we can conclude that the statement at higher temperatures, high-energy collisions happen more frequently, best explains why an increase in temperature increases the rate of a chemical reaction.
Explanation:
Space exploration was aided most by the use of liquid fuel.
<em>Hope</em><em> </em><em>this helps</em><em>.</em><em>.</em><em> </em>
To estimate the molar mass of the gas, we use Graham's law of effusion. This relates the rates of effusion of gases with their molar mass. We calculate as follows:
r1/r2 = √(m2/m1)
where r1 would be the effusion rate of the gas and r2 is for CO2, M1 is the molar mass of the gas and M2 would be the molar mass of CO2 (44.01 g/mol)
r1 = 1.6r2
1.6 = √(44.01 / m1)
m1 = 17.19 g/mol
False. Chemical products are on the right side.
Answer: five carbon atoms forms a ring. In adjacent two carbon atoms
An hydroxyl group (-OH) is attached. Molecular formula is
C5H8(OH)2
Explanation: