Draw an arrow from outside the cell (where there is only 1 water molecule) to inside that circle. Then color the water molecules that are labeled h2o:)
The answer for the following question is mentioned below.
<u><em>Therefore no of moles present in the gas are 1.12 moles</em></u>
Explanation:
Given:
Pressure of gas (P) = 1.2 atm
Volume of a gas (V) = 50.0 liters
Temperature (T) =650 K
To calculate:
no of moles present in the gas (n)
We know;
According to the ideal gas equation;
We know;
<u>P × V = n × R × T
</u>
where,
P represents pressure of the gas
V represents volume of the gas
n represents no of the moles of a gas
R represents the universal gas constant
where the value of R is 0.0821 L atm mole^{-1} K^-1
T represents the temperature of the gas
As we have to calculate the no of moles of the gas;
n = 
n = \frac{1.2*50.0}{0.0821*650}
n = \frac{60}{53.365}
n = 1.12 moles
<u><em>Therefore no of moles present in the gas are 1.12 moles</em></u>
Answer:
Option a.
0.01 mol of CaCl₂ will have the greatest effect on the colligative properties, because it has the biggest i
Explanation:
To determine which of the solute is going to have a greatest effect on colligative properties we have to consider the Van't Hoff factor (i)
These are the colligative properties:
ΔP = P° . Xm . i → Lowering vapor pressure
ΔT = Kb . m . i → Boiling point elevation
ΔT = Kf . m . i → Freezing point depression
π = M . R . T → Osmotic pressure
Van't Hoff factor are the numbers of ions dissolved in the solution. For nonelectrolytes, the i values 1.
CaCl₂ and KNO₃ are two ionic solutes. They dissociate as this:
CaCl₂ → Ca²⁺ + 2Cl⁻
We have 1 mol of Ca²⁺ and 2 chlorides, so 3 moles of ions → i = 3
KNO₃ → K⁺ + NO₃⁻
We have 1 mol of K⁺ and 1 mol of nitrate, so 2 moles of ions → i = 2
Option a, is the best.
Copper substance cannot be decomposed by a chemical change.
<h3 />
- When heated, the copper to carbonate breaks down into copper to oxide. The copper carbonate, which is dark in colour, releases carbon dioxide as well.Because they are the simplest chemically, elements cannot be broken down by chemical processes.
- Elements are those pure compounds that cannot be broken down by reactions, heating, electrolysis, or other common chemical processes. Examples of elements are oxygen, gold, and silver. Its makeup stays the same, though. One instance of a physical change is melting. A physical change is when a sample of matter experiences a change in some of its qualities but not in its identity. Water turns into water vapour when it is heated.
Learn more about copper here:
brainly.com/question/493292
#SPJ4
Answer:
125.5 ×10^-3 m^3= 0.1255 m^3
Explanation:
Volume=5.6mol×22.414dm^3
=125.5dm^3