Kinetic energy of pieces A and B are 2724 Joule and 5176 Joule respectively.
<h3>What is the relation between the masses of A and B?</h3>
Mass of piece B = Mb
- Velocities of pieces A and B are Va and Vb respectively.
- As per conservation of momentum,
Ma×Va = Mb×Vb
So, 1.9Mb × Va = Mb×Vb
=> 1.9Va = Vb
<h3>What are the kinetic energy of piece A and B?</h3>
- Expression of kinetic energy of piece A = 1/2 × Ma × Va²
- Kinetic energy of piece B = 1/2 × Mb × Vb²
- Total kinetic energy= 7900J
=>1/2 × Ma × Va² + 1/2 × Mb × Vb² = 7900
=> 1/2 × Ma × Va² + 1/2 × (Ma/1.9) × (1.9Va)² = 7900
=> 1/2 × Ma × Va² ×(1+1.9) = 7900 j
=> 1/2 × Ma × Va² = 7900/2.9 = 2724 Joule
- Kinetic energy of piece B = 7900 - 2724 = 5176 Joule
Thus, we can conclude that the kinetic energy of piece A and B are 2724 Joule and 5176 Joule respectively.
Learn more about the kinetic energy here:
brainly.com/question/25959744
#SPJ1
Answer:
But there are ways to harness kinetic energy to either generate useful mechanical work or electricity. This is what many have tried to do to make use of energy that would be otherwise wasted. One way to harness kinetic energy that has popped up many times in recent years has to do with roads and speed bumps
Explanation:
The material that makes up the medium such as air or water and the temperature.
Answer:
20 m/s
Explanation:
Recall that one of the equations of motions can be written:
v = u + at, (also see attached for reference)
Where,
v = final speed (we are asked to find this)
u = initial speed = 0 (because it starts from rest)
t = time taken = 5s
We simply substitute the given values into the equation:
v = u + at
v = 0 + (4)(5)
v = 20 m/s