Answer:
A. -5488J
B. 273.8J
C. 372.44N
Explanation:
Given:
m = 40kg
h = 14 m
v= 3.7 m/s
Part(a)
The change in the potential energy of the bear Earth system during the slide
AU = -mgh = -40(9.8) (14) = -5488 J
Part(b)
The kinetic energy of the bear just before hitting the ground is
Ks 1/2 mV^2= (40)(3.7)2 = 547.6 /2 = 273.8J
Part(c)
The change in the thermal energy of the system due to friction is
AEth = fxh=-(AK +AU) = 5488– 273.8 = 5214.2 J
The average frictional force that acts on the sliding bear is
F = Eth / 14= 5214.2/14 =372.44N
Answer:
5732 years
Explanation:
hope it helps, if not im sorry
Answer:
Explanation:
General equation of the electromagnetic wave:
![E(x, t)= E_0sin[\frac{2\pi}{\lambda}(x-ct)+\phi ]](https://tex.z-dn.net/?f=E%28x%2C%20t%29%3D%20E_0sin%5B%5Cfrac%7B2%5Cpi%7D%7B%5Clambda%7D%28x-ct%29%2B%5Cphi%20%5D)
where
Phase angle, 0
c = speed of the electromagnetic wave, 3 × 10⁸
wavelength of electromagnetic wave, 698 × 10⁻⁹m
E₀ = 3.5V/m
Electric field equation
![E(x, t)= 3.5sin[\frac{2\pi}{6.98\times10^{-7}}(x-3\times 10^8t)]\\\\E(x, t)= 3.5sin[{9 \times 10^6}(x-3\times 10^8t)]\\\\E(x, t)= 3.5sin[{9 \times 10^6x-2.7\times 10^{15}t)]](https://tex.z-dn.net/?f=E%28x%2C%20t%29%3D%203.5sin%5B%5Cfrac%7B2%5Cpi%7D%7B6.98%5Ctimes10%5E%7B-7%7D%7D%28x-3%5Ctimes%2010%5E8t%29%5D%5C%5C%5C%5CE%28x%2C%20t%29%3D%203.5sin%5B%7B9%20%5Ctimes%2010%5E6%7D%28x-3%5Ctimes%2010%5E8t%29%5D%5C%5C%5C%5CE%28x%2C%20t%29%3D%203.5sin%5B%7B9%20%5Ctimes%2010%5E6x-2.7%5Ctimes%2010%5E%7B15%7Dt%29%5D)
Magnetic field Equation
![B(x, t)= B_0sin[\frac{2\pi}{\lambda}(x-ct)+\phi ]](https://tex.z-dn.net/?f=B%28x%2C%20t%29%3D%20B_0sin%5B%5Cfrac%7B2%5Cpi%7D%7B%5Clambda%7D%28x-ct%29%2B%5Cphi%20%5D)
Where B₀= E₀/c

![B(x, t)= 1.2\times10^{-8}sin[\frac{2\pi}{6.98\times10^{-7}}(x-3\times 10^8t)]\\\\B(x, t)= 1.2\times10^{-8}sin[{9 \times 10^6}(x-3\times 10^8t)]\\\\B(x, t)= 1.2\times10^{-8}sin[{9 \times 10^6x-2.7\times 10^{15}t)]](https://tex.z-dn.net/?f=B%28x%2C%20t%29%3D%201.2%5Ctimes10%5E%7B-8%7Dsin%5B%5Cfrac%7B2%5Cpi%7D%7B6.98%5Ctimes10%5E%7B-7%7D%7D%28x-3%5Ctimes%2010%5E8t%29%5D%5C%5C%5C%5CB%28x%2C%20t%29%3D%201.2%5Ctimes10%5E%7B-8%7Dsin%5B%7B9%20%5Ctimes%2010%5E6%7D%28x-3%5Ctimes%2010%5E8t%29%5D%5C%5C%5C%5CB%28x%2C%20t%29%3D%201.2%5Ctimes10%5E%7B-8%7Dsin%5B%7B9%20%5Ctimes%2010%5E6x-2.7%5Ctimes%2010%5E%7B15%7Dt%29%5D)
Answer:
The frequency is 517.24 THz
Explanation:
Given:
The speed of light = 3.0 x
m/s
The wavelength of light wave = 5.8 x
m
Frequency = ?
We know that the relation among speed of light, wavelength and frequency is given by
c = νλ , where
c is speed of light
ν is the frequency
λ is the wavelength
To find the frequency(ν):
ν = c / λ
= 
=
x 
= (3000/5.8) x 
= 517.24 x

= 517.24 x
Hz (since 1
= 1 Hz)
= 517.24 THz (Tera Hertz)
Hence the frequency is 517.24 THz.
To refer to the original question?The answer is approxamately 24 electrons on a sphere.
<span>But the answer to the problem is:1.6 x 10-19 </span>
<span>(-8x10-6)/(-1.6x10-19)=5x10^13
</span>