1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Drupady [299]
3 years ago
8

Most of the symbols used to indicate elements are from an elements name in which language

Physics
2 answers:
antiseptic1488 [7]3 years ago
4 0
My bet guess is probably Latin
grigory [225]3 years ago
3 0

probably english or latin!

You might be interested in
How much charge is on each plate of a 3.00-μF capacitor when it is connected toa 15.0-V battery? b) If this same capacitor is c
Sauron [17]

Answer:

(a) 45 micro coulomb

(b) 6 micro Coulomb

Explanation:

C = 3 micro Farad = 3 x 10^-6 Farad

V = 15 V

(a) q = C x V

where, q be the charge.

q = 3 x 10^-6 x 15 = 45 x 10^-6 C = 45 micro coulomb

(b)

V = 2 V, C = 3 micro Farad = 3 x 10^-6 Farad

q = C x V

where, q be the charge.

q = 3 x 10^-6 x 2 = 6 x 10^-6 C = 6 micro coulomb

6 0
3 years ago
HELP ME PLEASE!!!!!!!!!
Stolb23 [73]

As per the given Figure attached here we know that both charges q1 and q2 will apply same force on charge q3 and hence the resultant force due to both charges will be along Y axis vertically upwards

So here we know that

F = \frac{kq_1q_3}{d_{13}^2}

now from the above equation

F = \frac{(9\times 10^9)(2\times 10^{-6})(4 \times 10^{-6})}{0.5^2}

F = 0.288 N

so both of the charges will apply 0.288 N force on q3 charge along the line joining them

now the net force due to vector sum is given by

F_{net} = 2Fcos\theta

here we know that angle is

\theta = 37 degree

now we have

F_{net} = 2\times 0.288 cos37

F_{net} = 0.46 N

so net force on q3 is 0.46 N vertically upwards along +Y axis

6 0
3 years ago
A seagull flies at a velocity of 9.00 m/s straight into the wind.
RideAnS [48]

a)If it takes the bird 18.0 minutes to fly 6 km away from the earth, the wind's speed will be 4 m/s.

b) The bird would need 7 minutes and 42 seconds to fly back 6 kilometers if he turned around and flew with the wind.

c)Compared to the 133.33 seconds it would take without the wind, the overall round-trip time is affected by the wind.

<h3>What is velocity?</h3>

The change of distance with respect to time is defined as speed. Speed is a scalar quantity. It is a time-based component. Its unit is m/sec.

The given data in the problem is

A seagull flies at a velocity,\rm v_{SA}  = 9 \ m/sec

The time the bird takes,t=18.0 min

The distance traveled relative to the earth = 6.00 km

a)

The seagull's relative velocity with reference to the ground as;

\rm v_{sg} = \frac{6.00 \times 10^3 \ m }{(20 min) \times \frac{60 s }{1 \ min}} \\\\ v_{sg}= 5.00 \ m/sec

Air velocity with reference to the ground is;

\rm v_{AG}= v_{SG}-v_{SA} \\\\ v_{AG} = 5.00 \ m/sec - 9.00 \ m/sec \\\\ v_{AG} = -4.00 \ m/sec

b)

If the bird turns around and flies with the wind, The time will he take to return 6.00 km is;

\rm v_{SG}=v_{SA}+v_{AG} \\\\ v_{SG}=-900 \ m/sec +(-4.00 \ m/sec) \\\\ v_{SG}= -13.00 \ m/sec

The time the bird takes;

\rm t = \frac{x_{SG}}{v_{SG}} \\\\ t = \frac{6.00 \times 10^3 \ m }{13.00 \ m/sec } \\\\ t = 462 m/sec \\\\ t = 7  \ min \  and  \ 42  \ sec

c)\

The total round-trip time compared to what it would be with no wind. is;

\rm  t = 20 \ min( \frac{60 \ sec }{1 \ min} )+ 462 \ sec \\\\ t = 1200 \ sec +6 462 \ ec \\\\ t= 1662 \ sec

The time for the round trip is;

\rm  t = \frac{12 \times 10^ 3 }{ 9 \ m/sec }  \\\\ t  = 1333.33 \ sec

Hence the wind's speed, the time bird would need to fly back the total round-trip time will be  4 m/s, 7 minutes and 42 seconds and 1333.33 sec.

To learn more about the velocity, refer to the link: brainly.com/question/862972.

#SPJ1

4 0
2 years ago
Wil-E-Coyote drops a bowling ball off a cliff to try to catch the Roadrunner. The cliff is
PtichkaEL [24]

Answer:

t = 5.19 s

Explanation:

We have,

Height of the cliff is 132 m

It is required to find the time taken by the ball to fall to the ground. Let t is the time taken. So, using equation of kinematics as :

y=ut+\dfrac{1}{2}gt^2\\\\\text{since}\ u=0\\\\y=\dfrac{1}{2}gt^2\\\\t=\sqrt{\dfrac{2y}{g}}\\\\t=\sqrt{\dfrac{2\times 132}{9.8}}\\\\t=5.19\ s

So, it will take 5.19 seconds to fall to the ground.

8 0
3 years ago
Given the two sets, which statement is true?<br><br> A = {1, 2}<br> B = {1, 2, 3, 4}
Mnenie [13.5K]
What are the two sets? I only see the two answers?
3 0
3 years ago
Other questions:
  • 25 POINTS and brainiest answer for General Science help!
    9·2 answers
  • Which explains earthquakes and volcanic eruptions?
    9·2 answers
  • A carpenter builds an exterior house wall with a layer of wood 3.1 cm thick on the outside and a layer of Styrofoam insulation 2
    14·1 answer
  • Unpolarized light of intensity I0 is incident on two polarizing filters. The transmitted light intensity is I0/10. What is the a
    5·1 answer
  • What are the five basic postulates of kinetic-molecular theory?
    12·1 answer
  • 2) How many significant figures are in the number 0.0037010?<br>​
    8·1 answer
  • a 2kg block is attached to a horizontal ideal spring with a spring constant of 200 Newton per minute. when the spring has its eq
    11·1 answer
  • What are the units for momentum?<br><br> Kg<br><br> Newtons<br><br> m/s<br><br> kg·m/s
    8·2 answers
  • Need help pls and explain also
    9·1 answer
  • a woman is swimming across a cold lake. her body temperature is 98 degrees fahrenheit , and the lake water is at 60 degrees fahr
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!