Answer:
d = 10.2 m
Explanation:
When the car travels up the inclined plane, its kinetic energy will be used to do the work in climbing up. So according to the law of conservation of energy, we can write that:

where,
m = mass of car
v = speed of car at the start of plane = (36 km/h)(1000 m/1 km)(1 h/3600 s)
v = 10 m/s
F = force on the car in direction of inclination = W Sin θ
W = weight of car = mg
θ = Angle of inclinition = 30°
d = distance covered up the ramp = ?
Therefore,

<u>d = 10.2 m</u>
The law of energy conservation states that energy cannot be created or destroyed, so choices B to D are immediately invalid. Choice A can explain this occurrence: <u>A. Some of the energy is used to combat friction, and thus is transformed from mechanical energy to heat.</u>
Options:
(a) Total kinetic energy of the system remains constant.
(b) Total momentum of the system is conserved.
(c) Both A and B are true.
(d) Neither A nor B are true.
Answer:
(b) Total momentum of the system is conserved.
Explanation:
An inelastic collision is a type of collision in which momentum is conserved and kinetic energy is not conserved. That is, there is loss of kinetic energy.
In an inelastic collision:
Total momentum before collision = Total momentum after collision
An example of inelastic collision is seen in the ballistic pendulum, The ballistic pendulum is a device in which a projectile such as a bullet is fired into a suspended heavy wooden stationary block.
Answer:
The value is the temperature of the air inside the tire
340.54 K
% of the original mass of air in the tire should be released 99.706 %
Explanation:
Initial gauge pressure = 2.7 atm
Absolute pressure at inlet
= 2.7 + 1 = 3.7 atm
Absolute pressure at outlet
= 3.2 + 1 = 4.2 atm
Temperature at inlet
= 300 K
(a) Volume of the system is constant so pressure is directly proportional to the temperature.


340.54 K
This is the value is the temperature of the air inside the tire
(b). Since volume of the tyre is constant & pressure reaches the original value.
From ideal gas equation P V = m R T
Since P , V & R is constant. So
m T = constant




value of the original mass of air in the tire should be released is

⇒ -0.99706
% of the original mass of air in the tire should be released 99.706 %.
Answer:

Explanation:
Mass 
Diameter 
Length 
Generally the equation for Volume flow rate is mathematically given by




Generally the equation for Friction factor is mathematically given by

Where Re
Re=Reynolds Number



Therefore



Generally the equation for Friction factor is mathematically given by



Where



