Answer:
a = 0.009 J
b = 0.19 m/s
c = 0.005 J and 0.004 J
Explanation:
Given that
Mass of the object, m = 0.5 kg
Spring constant of the spring, k = 20 N/m
Amplitude of the motion, A = 3 cm = 0.03 m
Displacement of the system, x = 2 cm = 0.02 m
a
Total energy of the system, E =
E = 1/2 * k * A²
E = 1/2 * 20 * 0.03²
E = 10 * 0.0009
E = 0.009 J
b
E = 1/2 * k * A² = 1/2 * m * v(max)²
1/2 * m * v(max)² = 0.009
1/2 * 0.5 * v(max)² = 0.009
v(max)² = 0.009 * 2/0.5
v(max)² = 0.018 / 0.5
v(max)² = 0.036
v(max) = √0.036
v(max) = 0.19 m/s
c
V = ±√[(k/m) * (A² - x²)]
V = ±√[(20/0.5) * (0.03² - 0.02²)]
V = ±√(40 * 0.0005)
V = ±√0.02
V = ±0.141 m/s
Kinetic Energy, K = 1/2 * m * v²
K = 1/2 * 0.5 * 0.141²
K = 1/4 * 0.02
K = 0.005 J
Potential Energy, P = 1/2 * k * x²
P = 1/2 * 20 * 0.02²
P = 10 * 0.0004
P = 0.004 J
Answer:
vₓ = xg/2y
Explanation:
In this question, let us find the time it takes for the ball on the right that has zero initial velocity to reach the ground.
By newton equation of motion we know that
y = v₀ t - ½ g t²
t = 2y / g
This is the time it takes for the ball on the right to reach the ground; at this time the ball on the left travels a distance
vₓ = x/t
vₓ = xg/2y
vₓ = xg/2y
Where we assume that x and y are known.
Answer: The velocity at different marked time points are given as
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
Explanation:
The slope of the tangent of the curve indicates the instantaneous velocity. So if the slope of the tangent is positive, that Is, the tangent makes a positive angle (above the horizontal axis) with the horizontal
axis, then the velocity at this point is positive, and if the slope of the tangent is negative, that is the tangent makes a negative angle with the horizontal axis (below the horizontal axis), then the velocity at this point is negative.
When the tangent of the line is parallel to the horizontal axis, the velocity is 0.
From the position-time graph attached, the sign on the instantaneous velocity for each time marked on the graph is given below
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
QED!
Answer:
10.23m/s^2
Explanation:
GIven data
mass of elevator = 2125 kg
Force= 21,750 N
Required
The maximum acceleration upward
F= ma
a= F/m
a=21,750/2125
a= 10.23m/s^2
Hence the acceleration is 10.23m/s^2
Answer:
glass if for a good view, but for absorbing heat concrete and brick is the best
Explanation:
wood is not a good idea bc it can cause fires from too much heat and it absorbs less heat but all of that depends on how good the material your using