1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sophie [7]
2 years ago
7

A(n) blank wave carries energy through space

Physics
1 answer:
vova2212 [387]2 years ago
6 0
A transverse wave (electromagnetic wave) carries energy through space.
You might be interested in
Balanced or Unbalanced?
Galina-37 [17]

Unbalanced because if it is pushing then stopping, that means that it is unbalanced.

6 0
3 years ago
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
A 29 foot ladder leans against a building so that the angle between the ground and the ladder is 75 ∘ . How high does the ladder
Aloiza [94]

Answer:

28.01m

Explanation:

Opp/Hyp = Sin

Sin 75 = x/29

x = 29 sin 75

x = 28.01m

3 0
3 years ago
The city council is considering discussing whether or not to put fluoride in the city's water supply. Many other towns add it al
umka2103 [35]
They should look for <span>a report from an independent scientific research firm,
even if they have to pay for it.

In preparing its report, the firm would have already surveyed many of the </span>
<span>citizens from several other towns that currently add fluoride to their water,
plus a lot of other relevant medical research on the subject.</span>
8 0
2 years ago
Read 2 more answers
What is the motion of the particles in this kind of wave?
Musya8 [376]
The answer to this question is B I think
7 0
3 years ago
Read 2 more answers
Other questions:
  • Which feature forms at a divergent boundary
    5·2 answers
  • You have a beaker with a layer of olive oil floating on top of water. A ray of light travels through the oil and is incident on
    12·1 answer
  • How has God designed sound waves so that a person is able to hear all the different instruments in a musical piece at the same t
    11·1 answer
  • The tides are considered an example of shallow-water waves because the tidal bulges have a wavelength that is on the order of __
    8·1 answer
  • An 80 kilogram skier slides on waxed skis along a horizontal surface of snow at a constant velocity while pushing with his poles
    12·1 answer
  • Two solenoids are nested coaxially such that their magnetic fields point in opposite directions. Treat the solenoids as ideal. T
    14·1 answer
  • (ii) Electromagnetic waves transfer energy.
    9·1 answer
  • Complete this paragraph regarding dangers from the Sun.
    13·2 answers
  • A ball is dropped from the top of a building. The gravitational force is 10 N down, and the force of air resistance is 1 N up. W
    14·1 answer
  • If an athlete takes 60s to complete a race of 300m find his speed
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!